
Types of Patents and Driving Forces behind the Patent

Growth in China∗

Zhiyuan Chen† Jie Zhang‡

November 17, 2018

Abstract

As a developing economy, China’s unprecedented patenting surge is puzzling. We study China’s
patent surge and its driving forces using a novel and comprehensive merged dataset on patent
applications filed by Chinese firms. We find that R&D investment, FDI, and patent subsidy have
different effects on different types of patents. First, R&D investment has a positive and significant
impact on patenting activities for all types of patents under different model specifications. Second,
the stimulating effect of foreign direct investment on patent applications is only robust for utility
model patents and design patents. Third, the patent subsidy only has a positive impact on design
patents. The results imply that FDI and patent subsidy may disproportionately spur low-quality
patents.
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1 Introduction

The number of patents in China has been exploding in the past three decades. Since 2011, China
has become the world’s number one in filing patent applications. Breaking the patent counts into
invention patents, utility models and designs, this extraordinary growth prevails.1 According to the
National Bureau of Statistics of China, applications for invention patents had increased from 25,236 in
2000 to 293,066 in 2010, with an average annual growth rate of 31.17%. Meanwhile, the utility model
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(design) patents applications had also risen steadily with a growth rate of 19.86% (24.73%). If different
types of patents represent distinct forms of innovation, patent heterogeneity should be important for
understanding the driving forces behind China’s patent surge as well as its policy implications.

Firms make the patenting decision by analyzing its costs and benefits. In principle, given the
supply of new ideas, anything that affects the costs or benefits of patenting can influence the patenting
outcome. Different ideas represent various types of innovation. As pointed out by Nemlioglu and
Mallick (2017), different types of innovation may benefit firms unequally. To distinguish ideas by
their novelty and applicability, CNIPA classifies the patents into three categories–invention, utility
models, and designs.2 These three types of patents vary greatly in the length of examination period,
protection period as well as requirements for being granted. These differences presumably affect the
net benefits of patenting, which further influence firms’ incentives for patenting.

Using a novel combined database of Chinese manufacturing firms, this paper aims to deepen the
understanding on Chinese patents growth by explicitly considering different types of patents sepa-
rately. Unlike existing studies, we show that the patent heterogeneity is important in analyzing the
patent surge in China. We apply count data models to deal with the problem of over-dispersion and
excessive zeros in the patent counts data. Our study documents that factors explaining the patenting
growth vary across different types of patents. The empirical results robustly show that R&D invest-
ment is one of the most important explanatory factors for all types of patents, but the marginal effect
of R&D differs for different types of patents. Contrasting with Hu and Jefferson (2009), we find that
foreign direct investment (FDI) only helps explain the creation of utility model and design patents,
but not invention patents. More interestingly, different from Li (2012), our study shows that patent
subsidy only has positive impact on the patents applications for designs. These results suggest the
non-innovation motives are important in explaining the patent applications by firms, but their im-
portance depends on the type of patents. This also implies that certain policies targeted at promoting
patenting activities may distort firms’ incentives and induce low-quality patents.

Our study relates to several strands of literature. First, it is closely related to the studies on patent
surge in China and other countries. To the best of our knowledge, Hu and Jefferson (2009) is the first
study documents and analyzes China’s patent surge. Using a firm-level dataset that contains inven-
tion patents statistics on large and medium sized industrial enterprises, they show that R&D only
explains a fraction of the explosive growth of invention patents. They find that FDI, amendments to
the patent law in 2000 and ownership reform have fostered Chinese firms to file more applications for
invention patents. In addition to these factors, the stimulating effect of patent subsidy programs ini-

2In China’s patent law, invention is referred to the new technical solution proposed for the product, method or related
improvement; the utility model refers to a new technical solution suitable for practical use proposed for shape, construction
or their combination. According to Article 22 of the Patent Law of the P.R.C.: any invention or utility model for which patent
right may be granted must possess novelty, inventiveness and practical applicability. In comparison, the requirement for the
approving of design patents is in Article 24 of the Patent Law of the P.R.C as “. . . . . . must not be identical with or similar to
any design which, before the date of filing, has been publicly disclosed in publications in the country or abroad or has been
publicly used in the country, and must not collide with any prior legal rights obtained by any other person.”
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tiated by Chinese provincial governments is also documented by Li (2012) and Dang and Motohashi
(2015). A recent study by Hu, Zhang, and Zhao (2017) shows that R&D has become less important
in explaining the patenting applications. They also document a weaker correlation between patents
and labor productivity. Put together, these studies suggest that the patent growth in China is not only
driven by the intensification of R&D but also by other non-innovation motives. Studies on the patent
surge in U.S. and Japan indicate that the impact of strengthened IPR protection on patenting is lim-
ited. Kortum and Lerner (1999) find that the jump in U.S. patenting between 1985 and 1995 is mainly
spurred by the shift in the management of research towards more applied activities but not by the
seemingly pro-patent legislative changes in the 1980s. Similarly, Sakakibara and Branstetter (2001)
examine the impact of the 1988 Japanese patent law reforms, and also find no evidence supporting
that the expanding of patent protection increased the R&D spending or patents.

Second, this study is associated with the literature on the technological effects of FDI. FDI can in-
fluence domestic firms through positive agglomeration effects or negative competition effects (Aitken
and Harrison, 1999). Since the China’s open policy initiated in the 1980s, FDI has played an impor-
tant role in stimulating China’s economic growth. The technological spillovers from FDI, however,
remains unclear. This is probably because institutional factors such as the protection of intellectual
property rights affect the magnitude of FDI spillovers (Bournakis, Christopoulos, and Mallick, 2018).
Using a provincial dataset from 1995 to 2000, Cheung and Ping (2004) find positive impact of FDI on
the number of (all types of) domestic patent applications in China. Using panel data analysis on Chi-
nese high-tech industries, Liu and Buck (2007) find the sources of foreign technology spillovers and
absorptive ability jointly determine the R&D performance of domestic firms. Nevertheless, Chen,
Wang, and Singh (2018) show the domestic private investment has become the dominant contributor
to China’s technological progress. They notice that the state-owned investment and FDI actually re-
duce the impact of domestic private investment on stimulating technological advancement. A more
comprehensive evaluation of the FDI spillovers by Lu, Tao, and Zhu (2017) reveals a negative impact
of horizontal FDI, i.e., FDI in the same industry, upon the productivity by Chinese domestic firms.
They also find no significant impact of FDI on spurring new products. We also find that FDI has
no significant impact on the filings of invention patents, suggesting that the technology spillovers
from FDI is limited. Moreover, in our study FDI is found to have significant and positive effects
on the patenting for utility models and designs. This implies that firms may employ the patenting
for low-quality ideas as a strategic tool to preempt competition from foreign firms. Policies aiming to
promote domestic technological progress through attracting FDI may have unintended consequences
by inducing firms to produce low-quality patents.

Lastly, our study connects to the literature on the effectiveness of patent-related fees in screening
patent quality. Patent fees are an essential element in the design of patent system. A large body of
literature has discussed the use of fees as a policy tool to weed out low-quality patents (see Caillaud
and Duchêne, 2011; De Rassenfosse and Jaffe, 2018; Gans, King, and Lampe, 2004; Schankerman and
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Pakes, 1986; Scotchmer, 1999). Our study fits into this strand of literature by focusing on reductions in
patenting application fees and examination fees caused by provincial innovation subsidy programs.
The empirical results suggest that the decrease in patenting fees induces more design patents. As we
mentioned earlier, design patents are of the lowest quality among all types of patents. In this sense,
the result suggests that maintaining certain level of patent fees is necessary for screening out low-
quality patents. Moreover, this may also reflect that the impact of patenting subsidy on stimulating
the firm’s innovation is limited. This is probably because patenting fees are small relative to the
expected return from patents granted for inventions and utility models.

This paper contributes to the existing literature in several aspects. First, this paper analyzes the
patent surge in China by explicitly considering three types of patents separately. We evaluate a set of
factors that may affect the patenting outcome for different types of patents in China. This enables us to
detect the potentially different driving forces for different categories of patent that represent different
forms of innovation, thus providing a more complete explanation of Chinese patents growth. Second,
this study also has important implications for innovation policies. We find that R&D investment, FDI,
and patent subsidy play different roles in spurring different types of patents. For example, if patent
subsidy is only effective for stimulating low-quality patents, subsidizing on the patenting fees may
cause a surge in low-quality patents that harm innovation incentives (Barton, 2000; De Rassenfosse
and Jaffe, 2018). Finally, this study also has general implications for researches using patents to mea-
sure innovation activities. In addition to R&D investment, other factors may also affect the firm’s
patenting choice. In this case, using patenting as the measure of innovation regardless of the insti-
tutional setting can be misleading. Moreover, innovation can take place in different forms. Different
innovation outcome have different market value, using aggregate measures such as R&D investment
or the total number of patents disregard the quality of innovation.

The rest of this paper is organized as follows. We introduce the data used in this paper in Section
2. In Section 3, we display the descriptive statistics to motivate the formal econometric analysis on
the driving forces behind patents. Section 4 shows the results in the order of the sophistication of
the econometric models. Section 5 deals with the potential endogeneity problem. In Section 6 we
conclude by discussing the empirical results and relevant policy implications.

2 Data

2.1 Data sources

This paper uses three databases. The first is a database of Chinese manufacturing firms from 2001 to
2007 compiled by China’s National Bureau of Statistics (NBS). This dataset is widely used in economic
studies focusing on China (see, for example, Hsieh and Klenow, 2009; Song, Storesletten, and Zilibotti,
2011; Chen, Zhang, and Zheng, 2017). It includes SOEs (State Owned Enterprises) and non-SOEs with
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annual sales no less than five million Renminbi (equivalent to about $700,000). These firms account for
98% of China’s total manufacturing exports. The dataset includes more than 100 financial variables
listed in the major accounting sheets of all these firms. In particular, it contains information on a
firm’s annual R&D expenditures.3

This study also uses a patents database provided by the CNIPA. It contains information on patent
applications that are submitted by firms in mainland China. For each patent the database has infor-
mation on its type (invention, utility model, or design), owner, application time, certification time,
agent of application, abstract, location, and expiration time. This information essentially allows the
researcher to track the entire life of patents from 1985 to 2012. But it should be noted that we have
no information on patent citations, which makes it difficult to measure the patents quality directly.4

Different from existing literature, we deal with different patents separately by assuming indepen-
dence between different types of patents.5 This allows us to identify different driving forces behind
the surge in different kinds of patents. For the purpose of this study, we merge this database with
data on Chinese manufacturing firms. The merged dataset contains the information of aforemen-
tioned two datasets. In Panel A of Table 1, we report the ratio of the number of patents applications
of the merged dataset to the total number patent applications in mainland China. As we can see, the
percentage of the total number of patents that are merged to the dataset is increasing for invention
patents and utility model patents, decreasing for design patents. This implies that firms have played
a more and more important role in producing high-quality patents in our sample, which adds to the
importance of this study in understanding the long-term economic growth driven by Chinese firms.
Since our dataset only covers around 10% of the total patent applications in China during 2001 to
2007, we have to be conservative should the results be generalized to the overall analysis of China’s
patent surge. Other entities such as research institutes and universities have also contributed to the
patent growth in China (Li, 2012). Another concern is on the efficiency of the matching between two
datasets. In the last row of Panel A in Table 1, we show the percentage of the total number of in-
vention patents in the merged dataset to the figure in the China Statistical Yearbook on Science and
Technology. We find this ratio varies across years, with 55.57% in 2007 and 96.35% in 2003. We tend
to believe that the merged dataset is representative enough for the purpose of this study.

Table 1 here

The last dataset this study employs is the information on provincial patent subsidies from 2001-
2007. This database is constructed from official documents released on the websites of the provincial
intellectual property offices. For each type of patents, the patent subsidy policy is classified into five

3R&D expenditures are only available for observations no later than 2001, which restricts the time span of the study to be
from 2001 to 2007.

4Dang and Motohashi (2015) propose to use the ’knowledge width’ of each patent as a measure of its quality. This method-
ology uses the number of nouns in claims to quantify the claim scope; a wider scope of claim represents better patent quality.

5Our results are robust if we assume certain correlation between the equation of different types of patents.
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categories based on various fees and statuses related to the application process, which include reduc-
tions in application fees, examination fees, agency costs, and annual fees, as well as grant-contingent
rewards after the approving of the application. For each subsidy variable, the outcome can be de-
fined according to one of the three possible states: no subsidy, partial subsidy, and complete subsidy;
they are exclusive to each other. Dang and Motohashi (2015) measure the intensity of subsidy by as-
signing a larger value to complete subsidy than to partial subsidy. To reduce the measurement error
caused by almost arbitrarily assigning values for the policy variables, we define the subsidy variable
as a dummy variable which is equal to 1 for either partial subsidy or complete subsidy happens and
0 otherwise. This approach also rules out the potential differences between different sub-classes of
patent subsidies imposed on different stages of patenting.6 This full database is reported in Table A1
in the appendix. The final database includes the starting year of the implementation of patent subsidy
in China mainland provinces from 2001 to 2007.

2.2 Data features

In this subsection, we present some descriptive statistics to motivate the formal econometric analysis
in subsequent sections. In general, the preliminary description of the dataset stresses the importance
of patent types in investigating the driving forces behind China’s patents surge, especially for policies
aimed at improving the innovative ability of Chinese firms.

2.2.1 Extensive and intensive margins of patent applications

How active are Chinese firms actually in applying for patents? Not surprisingly, a great majority of
Chinese firms have never submitted any patent applications. A large fraction of zero-patent counts is
an important feature of our data; we will take this into consideration when specifying the economet-
ric models. The average percentage of firms filing patents applications are 1.11%, 1.25%, 1.99% for
invention, design, and utility model patents, respectively. It is worth noting that the number of firms
that produce patents is much lower than those have positive R&D expenditures. In our data, 11%
of the entire observations are actively investing in R&D, which implies that R&D will not be fully
transformed into patent ideas. This confirms that patenting is just one mechanism through which
firms protect their profits due to innovation (Cohen, Nelson, and Walsh, 2000).

Although on average Chinese firms are not very active in applying for patents, the percentage
of firms applying for invention and utility model patents is in a steady growing trend during our
sample period. In Panel A of Figure 1, we plot the trends of patent applications. It shows clearly that
the percentage of firms who are applicants for invention patents had reached 1.6% in 2007, almost
3 times larger than it was in 2001. Applications for utility model patents displayed a similar trend;
the percentage increased from 1.45% in 2001 to 2.48% in 2007. In contrast, the percentage for active

6These include reductions in the fees associated with the application, examination, granting, and maintenance of patents.
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design patents applicants is relatively stable, hovering around 1.2%. In 2006 the percentage of firms
applying for invention patents had exceeded that number for design patents. This tells us that firms
had become more active in generating invention and utility model patents. As we have mentioned,
invention patents and utility model patents are of higher quality than design patents. The evolving
patterns of extensive margin of patent applications show that more and more Chinese firms are ap-
plying for high-quality patents. Hu, Zhang, and Zhao (2017) also find that most of China’s patenting
growth is due to the expansion at the extensive margin during 2007 and 2011.

Figure 1 here

We also note that many firms apply for more than one type of patents. To provide a more com-
plete picture of the change in Chinese firm’s patent applications, we group the applicants into three
cases–single-type patent applicants, two-type patent applicants, and three-type patent applicants (see
Panel B of Figure 1). It is clear to see a steady growing pattern for all three cases. In particular, the
percentage for two-type patent applicants has increased the most, three-type patent applicants the
least. This indicates that firms are expanding the variety of patents.

After exploring the extensive margin of the patent application, we turn to describe the character-
istics of average patent applications in the dataset. In Panel B of Table 1, we show the evolution of
patent intensity defined as the average number of patent applications per firm between 2001 and 2007.
As it shows, the average number of invention patents had increased the most, climbing from .016 up
to .117. In 2002 and 2004, the increase is around twofold. In comparison, the trend of utility model
patents and design patents are smoother. The average number of design patents even exhibited a
decreasing trend during 2004-2006, though it bounded back to .097 in 2007.

2.2.2 R&D and patent applications

R&D measures the innovation motives for patenting. The significant positive relationship between
R&D and patents has been well documented in many studies (Griliches, 1979, 1981; Hausman, Hall,
and Griliches, 1984; Hu and Jefferson, 2009; Hu, Zhang, and Zhao, 2017). Motivated by this literature,
we first check the simple correlation between R&D activities and the firm’s decision to apply for
patents for each type of patents, separately. Panel C of Table 1 shows how the contemporaneous
and lagged R&D expenditures are associated with the patent application. Interestingly, many firm
observations are found to have positive patent applications even in the absence of R&D investment;
the pattern is quite similar for either present or lagged R&D activities. We find some weak evidence
suggesting that firms undertaking R&D investment file more patent applications for inventions and
utility models. In contrast, we find no evidence supporting that more innovative firms file more
patent applications for new designs. At least the preliminary statistics show that non-R&D firms file
more design patent applications than R&D-active firms.
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Our simple statistics have shown that R&D have heterogeneous effects on the firm’s behavior
of filing different types of patents. In addition, non-R&D incentives may play a role in explaining
the filings of patents applications for designs. Disregarding the substantial heterogeneity when in-
vestigating the driving forces of the firm’s patent application will bias the estimates and generate
misleading results.

3 Empirical strategy

In this section, we employ formal econometric methods to analyze the driving forces behind the surge
in different types of patents. To save space, we only present two variations of count data models to
deal with over-dispersion and excessive zeros in the data.

3.1 Over-dispersion and negative binomial regression models

3.1.1 Over-dispersion in the data

We use Nit to denote the number of patent applications, the basic specification of Poisson model is
to parameterize the counts of patents as a Poisson distribution with mean λit that is associated with
certain firm characteristics:

Pr (Nit = nit|X it) =
e−λit λ

nit
it

nit!
,

λit = exp
(
X′itβ

)
where X′it includes interested explanatory variables. In particular, it can be written as

X′it =
(
log (RDit) , log (RDit−1) , Z′it

)
where log (RDit) is the log of R&D expenditures, and log (RDit−1) is the lagged R&D expenditures.
Zit is a vector including other important factors documented in the literature, such as foreign direct
investment ( f diit) and\or patent subsidy (psubit). To account for the industrial specific effects, we
also include a industrial dummy variables that is equal to one when the firm belongs to a high-tech
industry.7 Considering that time effects may affect the growth of patents, we also control for the fixed
effects. The specification of Poisson model implicitly imposes the conditional mean and variance of
Nit are the same. When the conditional variance is greater than the conditional mean, the data are
over-dispersed. To detect whether there is over-dispersion in the data, we allow the variance-mean
ratio to be any positive constant:

7Alternatively, we have tried to include a full set of industry dummies to control for potential industry fixed effects; the
results remain robust.
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Var (Nit|X it) = σ2E (Nit|X it) = σ2λit (1)

Then σ2 can be estimated using the QMLEs of β by considering the sample analog. We estimate
the variance-mean ratio for the Poisson models. For all models, the estimation results show that σ̂’s
are greater than one, strongly suggesting over-dispersion in the data. Therefore we use alternative
specifications to suit our data better.8

3.1.2 Negative binomial mean-dispersion model

Following the existing literature on count data models, we consider two approaches to deal with the
over-dispersion in the data. One is the mean-dispersion model with a common parameter, the other is
a model with a parameterized distribution for the unobserved heterogeneity. Below we only discuss
briefly about these two methods. Details about these econometric methods can be found in Cameron
and Trivedi (2013).

Mean-dispersion model with common parameter One way of constructing the negative binomial
mean-dispersion model is to introduce unobserved heterogeneity in a Poisson model.9 Let ηit be
the unobserved error term and assume that exp (ηit) follow a gamma distribution with parameters
(1/α, α). Thus E (exp (ηit)) = 1, Var (ηit) = α. We further assume that exp (ηit) is independent
of X it.10 It can be shown that the conditional distribution of Nit on X it is negative binomial, with
conditional mean and variance as follows.11

E (Nit|X it) = λit (2)

Var (Nit|X it) = λit + αλ2
it (3)

α is called the parameter of over-dispersion; the larger α is, the more over-dispersed the data are. In
particular, when α = 0, the negative binomial specification degenerates to be the Poisson model. In
this sense, the negative binomial model generalizes the Poisson model to capture the over-dispersion
in the data. As is pointed out, under (2), for any fixed positive value for α, the coefficient estimates of
β by maximizing the associated log likelihood function L (β, α) are consistent (Wooldridge, 2010).

Mean-dispersion model with parameterized α Although the aforementioned negative binomial
mean-dispersion model tackles the over-dispersion in the data to some extent, the assumption that α

is identical to all observations is too restrictive. To relax this restriction, we consider parameterizing

8To save space, we do not present the detailed results. The full estimation results are available upon request.
9The negative binomial mean-dispersion model is also known as the NegBin Iwemodel (Cameron and Trivedi, 2013)

10We will return to discuss this assumption when we consider the endogeneity issue of our models.
11See Cameron and Trivedi (2013) for details about the derivation of the negative binomial model.
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α as follows
ln (αit) = γ0 + W ′

itθ+ fo + ft (4)

where W ′
it is a vector containing age, size, and htech. fo represent the coefficients of ownership dum-

mies; ft is the coefficient for year dummies. γ0, θ, fo, and ft are parameters to be estimated along with
the other model coefficients.

3.2 Excessive zeros of patent applications

In the data section, we have shown that most (around 98%) of the firms do not file any patent ap-
plications. This poses challenges to the assumption that the outcome of patents follows a Poisson
distribution. To fit the data better, we need to model the event of whether a firm creates patents in
addition to the Poisson distribution. Lambert (1992) develops the Zero Inflated Poisson (ZIP) model
to deal with this situation. Let pit be the probability that a firm refuses to apply for any patents, then
(1− pit) becomes the propensity of applying for some patents. To model the discrete choice to patent
or not, we specify following logit model:

pit = F
(
W′itγ

)
=

1
1 + exp

(
−W′itγ

) (5)

Then the log likelihood function for this specification can be written as:

L (γ, β; nit, Xit, Wit) = ∑
nit=0

ln
{

F
(
W′itγ

)
+

[
1− F

(
W′itγ

)]
×

[
exp

(
− exp

(
X′itβ

))]}
+ ∑

nit>0

{
ln

[
1− F

(
W′itγ

)]
− exp

(
X′itβ

)
+ nitX′itβ− ln (nit!)

}
(6)

The estimate of (γ, β) is obtained by maximizing the above likelihood function (6). To account for the
over-dispersion problem, we also add an unobserved component to λit and estimate a Zero Inflated
Negative Binomial (ZINB) model.

4 Estimation results

The estimation results of the negative binomial mean-dispersion model are reported in Table 2. First,
in each group of the models, the estimation results of α indicate strong over-dispersion in the data.
Considering this, the negative binomial model, which takes the over-dispersion into account, fits our
data better. In the results of negative binomial model, the patent subsidy is more effective for utility
model patents and design patents. Also, private firms and foreign firms are found to file more patent
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applications than state-owned firms for all types of patents.

Table 2 here

Note that the productivity of R&D in creating patents differs across types of patents. The invention
patents have the largest R&D-patent elasticity both for the current and lagged R&D, while the design
patents display the smallest R&D-patent elasticity. Moreover, the coefficient of lagged R&D is smaller
than that of the present R&D for all types of patents. However, for utility models and designs, R&D
expenditures become less important for the filings of patents when we control for FDI and patent
subsidy. Furthermore, FDI is more effective in stimulating the patenting applications for designs
than inventions and utility models. Note that these differences found for various types of patents
would disappear if we pool all patents together or only consider a single type of patents. Especially,
the estimation results would be much less informative since the potential heterogeneous effects are
averaged out when we pool all of the three types of patents together, which are shown in Column (1)
in Table 2.

In Table 3 we display the estimation results for the mean-dispersion model with a parameterized
α. As we can see from the results, the coefficients of explanatory variables display a pattern similar
to results presented in Table 2. This shows that previous results are robust to the alternative pa-
rameterization of α. Also note that for the equation of ln (α), the coefficients of size, age, and htech
are all negative, implying that big firms, old firms, and firms in high-tech industries display smaller
over-dispersion in the data.

Table 3 here

In Table 4, we present the results of ZIP and ZINB. For different types of patents, we estimate
two different models by including different covariates into Wit. In subgroup a, we include patent
subsidies, firm size, firm age, ownership dummies, and a constant, while in subgroup b FDI and a
full set of year dummies are added. Under our specification, because most of the observations are of
zero patent applications, the inflate part of the model captures more about the extensive margin of
the patents application. The part of Poisson process is associated more with the intensive margin of
the patent application. For any variables included in Xit, we say there is a strong evidence showing
that it explains the patents outcome when its coefficient is significantly positive in the part of negative
binomial model.

Table 4 here

There is still a lack of strong evidence showing that patent subsidy stimulates firms to file more
invention patents. But the coefficients of log (RDit) and log (RDit−1) are positive and significant at
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1% significance level for the group of invention patents. More importantly, these coefficients are
larger than those in the groups of utility model patents or design patents, which implies R&D plays
a more important role in explaining the invention patents. Last but not the least, the effect of FDI on
invention patents is positive. This could be either the impact of foreign competition or knowledge
spillovers (Aitken and Harrison, 1999; Lu, Tao, and Zhu, 2017). Overall, these results suggest that FDI
is not a significant factor in explaining the patenting outcome when conditioning on the firm’s R&D
investment.

We can see from the middle columns of Table 4 that both patent subsidy and FDI play significant
roles in driving up the number of applications for utility model patents. In all estimations, the coef-
ficient of the dummy variable for private firms are significant and positive for the negative binomial
part, and negative for the inflate part. This implies private firms are filing more patents for all of the
three types of patents. In contrast, there is only evidence showing that foreign firms are filing more
design patents.

5 Endogeneity issue

Our empirical results in previous section display some interesting patterns that are consistent with
existing studies by Hu and Jefferson (2009) and Li (2012). However, we should be cautious because
of the endogeneity issue caused by unobserved idiosyncratic characteristics. In this section, we try
to use panel data methods to deal with this concern. We regard the estimation results as a more
convincing interpretation of our dataset.

In the specification of negative binomial model, we allow the variance-to-mean ratio to differ
across firms and across time by imposing a specific form to the Poisson parameter. However, a short-
coming of the negative binomial specification is it assumes that the unobserved firm-specific hetero-
geneity is independent of the explanatory variables. To deal with this problem, we follow Hausman,
Hall, and Griliches (1984) (HHG hereafter) to estimate a fixed-effects negative binomial model. This
model allows for arbitrary dependence between the unobserved idiosyncratic characteristics and the
explanatory variables while allowing for over-dispersion in the data.12 An alternative specification of
the error term is the random-effects negative binomial model. We omit the details of its specification.
Instead, we show results of the Hausman specification test that favor the fixed-effects model. To save
space, we only report the estimation results of fixed effects negative binomial model in Table 5.

Table 5 here

One noteworthy result in Table 5 is a great shrinkage in the sample size. Compared to the original

12We also tried to employ the results of fixed effects Poisson model. The results, however, show that fixed effects Poisson
model provides a poor fitting to the data with the Hausman testing statistic being negative for most of the groups.
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sample size in the pooled regression, most of the observations are deleted due to the all-zero outcomes
for the dependent variable. We also report the number of observations deleted because of single
observation over the sample period. This great loss of information reminds us to be cautious when
interpreting the results.

In Table 5, the coefficients of log (RDit) and log (RDit−1) are much smaller than estimates reported
in Table 3 and Table 4. Recall that we have shown that there is a substantial R&D investment gap
between firms with patent applications and those of no patent application. Since the panel data
model drops most of the data with zero patent applications, the remaining dataset contains firms that
invest relatively more in R&D. As a result, the variations in patents and R&D both become smaller.
The coefficient estimates show that the drop in the variation of patents is more significant compared
to that in the variation of investment in R&D. For the coefficient of FDI, we find it only drives the
filings of utility model patents and design patents. When we look at the coefficient estimates for
patent subsidy, the coefficient is only significantly positive for design patents.

6 Conclusion

R&D has a long-lasting effect on firm performance (Bournakis and Mallick, 2018). Our empirical re-
sults robustly show that R&D has a positive impact on patenting. This is consistent with the findings
in studies investigating the R&D-patents relationship (Griliches, 1981; Hausman, Hall, and Griliches,
1984; Hall, Griliches, and Hausman, 1986). But a simple calculation can show that R&D growth is not
sufficient to explain the patenting growth in China. According to the OECD database, China’s R&D
expenditures had a 256.27% (215.87%) increase from 1999 to 2006 (2000 to 2007). Given the patent-
R&D elasticity reported in Table 5, the predicted patenting growth rate should be 5.64% for invention
patents, 7.57% for utility model patents, and 9.24% for design patents. In contrast, the number of
invention, utility model, and design patents have a 896.47% , 333.41%, and 160.05% increase in the
sample period, separately. This reminds us to consider other factors in order to fully explain the
patenting growth in China.

To some extent, the empirical results question the perception that foreign firms have stimulated
Chinese firms to apply for more inventive patents. Conditional on the firm’s R&D investment, FDI
has no significant impact on the patenting for inventions. However, FDI has positive and significant
effects on utility model and design patents. Note that the coefficient of FDI is a mixture of spillover
effects and competition effects. This result implies that the spillover effect is restricted to low-quality
ideas. With the reduced costs of innovation, the competition effect from FDI further encourages
Chinese firms to employ relatively low-quality patents to take advantage of some loopholes in the
the patent law to compete with foreign firms (Hu and Jefferson, 2009). Lu, Tao, and Zhu (2017) also
find no beneficial spillovers from FDI in China.

We only find that the patent subsidy has positive and significant effects on the patenting of design
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patents. We attribute this finding to two main reasons. First, note that design patents are of the lowest
quality. Generating a design patent application is of costs lower than an invention patent or utility
model patent. Firms make patenting decision by comparing its expected payoffs and costs. If the
reductions in the patenting fees are negligible compared to the benefits, the firm’s patenting decision
will not change. As a result, patenting subsidy will increase the low-quality patent applications dis-
proportionately (De Rassenfosse and Jaffe, 2018). Second, Li (2012) argues that patent subsidies are
not only effective in encouraging more individuals and universities to apply for invention patents but
also are inducing firms to file more applications for invention patents. According to our results, we
expect this argument only works for individuals and small firms which are usually more financially
constrained than large firms and research institutions. Overall, patent subsidy has only stimulated
the creation of low-quality patents (the design patents). This is consistent with the findings by Dang
and Motohashi (2015). We also note that the coefficient of firm size is positive and significant for
all the three different types of patents. This implies that larger firms are more likely to apply for
patents. There is no significant correlation between firm age and the creation of patents; implying
that patenting is neutral to firm age.

The empirical results have several implications for policies aiming to promote innovation in de-
veloping countries. First, development policies using FDI as the key driver of technological progress
need to be reconsidered. FDI may play an important role in spreading relatively low-quality ideas,
but relying on FDI to move up to the technological frontier is much less promising. The cutting-edge
technology can only be developed through indigenous R&D. Second, patent subsidies increase the
low-quality patents disproportionately by decreasing the patenting fees. The surge in low-quality
patents may cause the fragmentation of intellectual property rights. Ultimately, the fragmentation
will significantly raise the costs of using knowledge and may discourage R&D investment (Heller
and Eisenberg, 1998). In addition, the surge in patenting applications may cause the patents exam-
iners to spend less time on each patent and make more mistakes in granting patent rights. This can
also lead to low-quality patents. To guarantee the quality standards, reductions in the patent fees
should be combined with improvement in governance of patent offices as well as a supply of more
professional patent examiners.

This study stresses the importance of patent quality in understanding the patent surge in China.
As indicated by the empirical findings, R&D investment is more important in explaining high-quality
patents, while FDI and patent subsidy stimulate the filings of patents of lower quality. It is the future
work that we aim to reconcile these findings in a coherent theoretical framework.
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Tables and figures (in the order of presence) 

 

Table 1  Summary statistics of patents in merged dataset 

Panel A: Number and percentage of patents in the merged dataset 

year 2001 2002 2003 2004 2005 2006 2007 

invention 

1982 4462 5333 7993 10100 17033 19750 

6.60% 11.21% 9.39% 12.15% 10.80% 13.93% 12.90% 

utility model 

4202 5649 7496 7798 10720 15324 18212 

5.30% 6.13% 6.95% 6.99% 7.76% 9.58% 10.12% 

design 

6316 8838 9131 10326 12665 15393 16425 

11.19% 12.01% 10.54% 10.17% 8.35% 8.19% 6.48% 

matching efficiency 57.10% 81.26% 96.35% 87.20% 57.58% 67.33% 55.67% 

Panel B: Trend of average number of patent applications 

year 2001 2002 2003 2004 2005 2006 2007 

# of invention patents/firm 0.016 0.034 0.038 0.072 0.070 0.095 0.117 

# of utility model 

patents/firm 0.035 0.043 0.053 0.071 0.075 0.086 0.108 

# of design patents/firm 0.052 0.068 0.065 0.094 0.088 0.086 0.097 

Panel C: R&D and patent application: discrete choices 

 invention utility model design all types 

 No Yes No Yes No Yes No Yes 

p
re

se
n

t 

R
&

D
 

No 853,150 4,249 848,283 9,116 850,982 6,417 841,760 15,639  

Yes 130,449 6,798 126,612 10,635 131,232 6,015 120,631 16,616 

la
g

g
ed

 

R
&

D
 No 606,192 3,853 602,412 7,633 604,885 5,160 597,048 12,997 

Yes 99,390 5,652 96,477 8,565 100,312 4,730 91,797 13,245 

Note: matching efficiency refers the ratio of number of invention patents in the merged dataset to the published figure 

in China Statistical Yearbook on Science and Technology 2001-2007. 

 

 

 

 

 

 

    



 

 

Notes: the vertical axis is the ratio of firms that produces patents (for a certain type) to the total number of patents. 
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4. Model specifications and estimation results 

Models without firm-specific effects: the Poisson model and the negative binomial 

model 

 

Table 2  Regression results of negative binomial mean-dispersion model with common 𝛼 

Dependent Variables Total patents Invention Utility model Design 

 (1) (2) (3) (4) 

Independent Variables     

𝑙𝑜𝑔(𝑅𝐷𝑖𝑡) 0.103*** 0.137*** 0.119*** 0.074*** 

 (0.005) (0.006) (0.004) (0.012) 
𝑙𝑜𝑔(𝑅𝐷𝑖𝑡−1) 0.077*** 0.089*** 0.084*** 0.064*** 

 (0.007) (0.007) (0.004) (0.016) 
𝑝𝑠𝑢𝑏𝑖𝑡 0.455*** 0.210** 0.334*** 0.584*** 

 (0.053) (0.072) (0.060) (0.094) 
𝐹𝐷𝐼𝑗𝑡 3.255*** 2.257*** 2.903*** 4.109*** 

 (0.169) (0.341) (0.125) (0.300) 
𝑠𝑖𝑧𝑒𝑖𝑡 0.706*** 0.560*** 0.627*** 0.826*** 

 (0.018) (0.026) (0.017) (0.035) 
𝑎𝑔𝑒𝑖𝑡 0.004* 0.002 0.002 0.005 

 (0.002) (0.003) (0.001) (0.003) 
ℎ𝑡𝑒𝑐ℎ𝑖𝑡 0.415*** 1.077*** 0.289*** 0.217** 

 (0.041) (0.077) (0.042) (0.071) 
𝑝𝑟𝑖𝑣𝑎𝑡𝑒𝑖𝑡 0.642*** 0.467*** 0.409*** 0.887*** 

 (0.069) (0.063) (0.074) (0.116) 
𝑓𝑜𝑟𝑒𝑖𝑔𝑛𝑖𝑡  0.969*** 0.675*** 0.553*** 1.310*** 

 (0.082) (0.094) (0.079) (0.138) 
𝑐𝑜𝑛𝑡𝑎𝑛𝑡 -6.984*** -7.232*** -7.116*** -9.008*** 

 (0.149) (0.175) (0.161) (0.271) 

𝑡𝑖𝑚𝑒 𝐹𝐸 yes yes yes yes 

𝑙𝑛(𝛼) 3.653*** 3.686*** 3.471*** 4.853*** 
 (0.019) (0.051) (0.023) (0.028) 

# of obs. 706388 

𝑙𝑜𝑔 − 𝑝𝑙 -158500.4 -57374.6 -94996.8 -71006.1 

𝜒2 8026.2 6269.5 10592.0 2314.4 

 �̂� 38.59 39.89 32.16 128.1 

Note: the dispersion parameter 𝛼 is common to all observations. 𝜒2 is the chi-square testing statistic under the null 

hypothesis that a constant-only model does better. 𝑙𝑜𝑔 − 𝑝𝑙 is the log-pseudo likelihood. All standard errors are robust 

to some kinds of misspecification recommended by Cameron and Trivedi (2009). �̂� is parameter capturing the over-

dispersion. 
*** 0.1% significance level; ** 1% significance level; * 5% significance level. 

 

 

 

 



 

 

 

 

Table 3  Estimation results of negative binomial mean-dispersion model with 𝛼 parameterized 

Dependent Variables Total patents Invention Utility model Design 

 (1) (2) (3) (4) 

Independent Variables     

𝑙𝑜𝑔(𝑅𝐷𝑖𝑡) 0.098*** 0.132*** 0.112*** 0.074*** 

 (0.005) (0.007) (0.004) (0.008) 
𝑙𝑜𝑔(𝑅𝐷𝑖𝑡−1) 0.068*** 0.083*** 0.080*** 0.053*** 

 (0.005) (0.007) (0.004) (0.009) 
𝑝𝑠𝑢𝑏𝑗𝑡 0.376*** 0.168* 0.337*** 0.417*** 

 (0.053) (0.069) (0.059) (0.095) 
𝐹𝐷𝐼𝑗𝑡 3.164*** 2.495*** 3.040*** 3.264*** 

 (0.160) (0.327) (0.138) (0.265) 
𝑠𝑖𝑧𝑒𝑖𝑡 0.718*** 0.620*** 0.656*** 0.786*** 

 (0.018) (0.023) (0.024) (0.028) 
𝑎𝑔𝑒𝑖𝑡 0.001 -0.001 0.001 -0.001 

 (0.002) (0.002) (0.001) (0.002) 
ℎ𝑡𝑒𝑐ℎ𝑖𝑡 0.411*** 1.141*** 0.297*** 0.160* 

 (0.038) (0.066) (0.045) (0.062) 
𝑝𝑟𝑖𝑣𝑎𝑡𝑒𝑖𝑡  0.690*** 0.465*** 0.423*** 0.945*** 

 (0.055) (0.062) (0.066) (0.095) 
𝑓𝑜𝑟𝑒𝑖𝑔𝑛𝑖𝑡  0.921*** 0.627*** 0.527*** 1.226*** 

 (0.069) (0.097) (0.076) (0.114) 
𝑡𝑖𝑚𝑒 𝐹𝐸 yes yes yes yes 

 Dependent variable: ln 𝛼     

𝑠𝑖𝑧𝑒𝑖𝑡 -0.392*** -0.380*** -0.328*** -0.509*** 
 (0.011) (0.029) (0.018) (0.015) 

𝑎𝑔𝑒𝑖𝑡 -0.011*** -0.006** -0.014*** -0.002 
 (0.001) (0.002) (0.002) (0.001) 

ℎ𝑡𝑒𝑐ℎ𝑖𝑡 -0.879*** -0.616*** -0.315*** -1.016*** 
 (0.033) (0.075) (0.049) (0.047) 

𝑝𝑟𝑖𝑣𝑎𝑡𝑒𝑖𝑡 -0.253*** -0.359*** -0.281** -0.420*** 
 (0.052) (0.086) (0.091) (0.074) 

𝑓𝑜𝑟𝑒𝑖𝑔𝑛𝑖𝑡 0.130* 0.798*** 0.003 -0.222** 
 (0.056) (0.099) (0.097) (0.080) 

𝑡𝑖𝑚𝑒 𝐹𝐸 yes yes yes yes 

# of obs. 706388 

𝑙𝑜𝑔 − 𝑝𝑙 -155354.3 -56215.7 -93913.4 -69304.0 

𝜒2 9571.3 6772.2 10421.9 2995.6 

Note:𝛼  is parameterized as a function of  𝑎𝑔𝑒, 𝑠𝑖𝑧𝑒, ℎ𝑡𝑒𝑐ℎ, and 𝑜𝑤𝑛𝑒𝑟𝑠ℎ𝑖𝑝 and 𝑦𝑒𝑎𝑟 dummies  𝜒2 is the chi-square 

testing statistic under the null hypothesis that a constant-only model does better. 𝑙𝑜𝑔 − 𝑝𝑙 is the log-pseudo likelihood. 

All standard errors are robust to some kinds of misspecification recommended by Cameron and Trivedi (2009). �̂� is 

parameter capturing the over-dispersion. 
*** 0.1% significance level; ** 1% significance level; * 5% significance level. 

 

 



 

 

 

Table 4  Estimation results of the zero-inflated Poisson and negative binomial models 

patent types Invention Utility model Design 

 Poisson NB Poisson NB Poisson NB 

𝑙𝑜𝑔(𝑅𝐷𝑖𝑡) 0.125*** 0.131*** 0.030** 0.108*** -0.003 0.076*** 

 (0.027) (0.007) (0.011) (0.004) (0.007) (0.006) 

𝑙𝑜𝑔(𝑅𝐷𝑖𝑡−1) 0.017 0.084*** 0.019 0.079*** 0.003 0.049*** 

 (0.027) (0.007) (0.011) (0.004) (0.006) (0.006) 

𝑝𝑠𝑢𝑏𝑗𝑡 0.533** 0.267 -0.008 0.189*** 0.363*** 0.814*** 

 (0.194) (0.139) (0.050) (0.056) (0.059) (0.076) 

𝐹𝐷𝐼𝑗𝑡 4.288*** 3.075*** 0.888*** 0.319 0.223 -0.470 

 (0.428) (0.447) (0.149) (0.262) (0.170) (0.268) 

𝑠𝑖𝑧𝑒𝑖𝑡 0.805*** 0.268*** 0.490*** 0.389*** 0.452*** 0.357*** 

 (0.061) (0.046) (0.038) (0.034) (0.027) (0.028) 

𝑎𝑔𝑒𝑖𝑡 -0.019*** -0.004 -0.010*** -0.014*** -0.009*** -0.012*** 

 (0.003) (0.004) (0.001) (0.002) (0.002) (0.003) 

𝑝𝑟𝑖𝑣𝑎𝑡𝑒𝑖𝑡  0.057 0.200 0.358*** 0.303** 0.497*** 0.732*** 

 (0.263) (0.136) (0.079) (0.112) (0.093) (0.124) 

𝑓𝑜𝑟𝑒𝑖𝑔𝑛𝑖𝑡  -0.569 1.403*** 0.354*** 0.574*** 0.535*** 0.969*** 

 (0.387) (0.183) (0.082) (0.131) (0.099) (0.141) 

ℎ𝑖𝑡𝑒𝑐ℎ 0.920*** 0.578*** 0.282** 0.153* -0.305*** -0.683*** 

 (0.126) (0.115) (0.092) (0.072) (0.070) (0.079) 

𝑙𝑜𝑔 (𝛼) -- 2.581*** -- 2.669*** -- 3.476*** 

  (0.046)  (0.053)  (0.050) 

𝑙𝑜𝑔 − 𝑝𝑙 -105770.9 -56429.5 -123183.4 -93710.7 -122782.6 -68700.1 

𝜒2-statistic 255719.7 12490.2 39774.8 10394.1 26176.1 2709.9 

Vuong test 20.54 11.62 40.56 13.87 35.71 21.83 

# of obs. 706388 

Note: Vuong test is the model specification test on zero-inflated negative binomial model versus standard 

negative binomial model (Vuong, 1989), with the null hypothesis that the standard negative binomial model fits 

the data better. Year dummies are include in all specifications. The standard errors are adjusted for the correlation 

between equations. 
*** 0.1% significance level; ** 1% significance level; * 5% significance level. 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

5. Dealing with Endogeneity Issues 

Negative binomial model with fixed effects 

Table 5  Estimation results of fixed effects negative binomial model 

Dependent Variables Total patents Invention Utility model Design 

 (1) (2) (3) (4) 

Independent Variables     

𝑙𝑜𝑔(𝑅𝐷𝑖𝑡) 0.030*** 0.019*** 0.022*** 0.025*** 

 (0.002) (0.003) (0.002) (0.003) 
𝑙𝑜𝑔(𝑅𝐷𝑖𝑡−1) 0.016*** 0.006* 0.011*** 0.015*** 

 (0.002) (0.003) (0.002) (0.003) 
𝑝𝑠𝑢𝑏𝑗𝑡 0.068 -0.033 0.089 0.194** 

 (0.038) (0.064) (0.052) (0.065) 
𝐹𝐷𝐼𝑗𝑡 0.386*** 0.219 0.321** 0.928*** 

 (0.086) (0.152) (0.116) (0.137) 
𝑠𝑖𝑧𝑒𝑖𝑡 0.139*** 0.148*** 0.095*** 0.221*** 

 (0.010) (0.019) (0.014) (0.017) 
𝑎𝑔𝑒𝑖𝑡 0.000 0.001 -0.000 -0.002 

 (0.001) (0.002) (0.001) (0.002) 
𝑡𝑖𝑚𝑒 𝐹𝐸 yes yes yes yes 

# of obs. 65140 27530 42155 28087 
dropped obs.:reason I 73051 73051 73051 73051 

dropped obs (groups).:reason II 568197 605807 591182 605250 
 (147510) (155232) (152223) (155127) 

𝑙𝑜𝑔 − 𝑝𝑙 -55319.2 -16803.1 -30604.3 -21716.8 

𝜒2 1782.4 1318.7 1088.1 582.6 

Hausman test χ2  14063.63 6130.26 8296.64 3566.26 

Note: Hausman test is the specification test under the null hypothesis that random-effects model and fixed-effects 

model have no systematic difference in coefficients. 𝜒2 is the chi-square testing statistic under the null hypothesis that 

a constant-only model does better. 𝑙𝑜𝑔 − 𝑝𝑙 is the log-pseudo likelihood. Reason I for dropping observations is the 

single observation over the sample period; reason II is the all-zero outcomes observations. All standard errors are 

clustered at city level. *** 0.1% significance level; ** 1% significance level; * 5% significance level. 

 

 

 

 

 

 

 

 



 

 

 

Patent subsidy data 

Table A1 Data of patent subsidies 

province starting year province starting year 

Beijing 2000 Henan 2002 

Tianjing 2002 Hubei 2007 

Hebei 2002 Hunan 2004 

Shanxi 2002 Guangdong 2000 

Inner 

Mongolia 2001 Guangxi 2004 

Liaoning 2002 Hainan 2001 

Jiling 2004 Chongqing 2007 

Heilongjiang 2001 Sichuan 2001 

Shanghai 1999 Guizhou 2006 

Jiangsu 2001 Yunnan 2003 

Zhejiang 2001 Xizang 2004 

Anhui 2003 Shanxi 2004 

Fujian 2002 Gansu -- 

Jiangxi 2002 Qinghan 2006 

Shangdong 2006 Ningxia 2010 

  Xinjiang 2002 

 


