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Abstract

We extend the empirical framework by Peters et al. (2017) to include both R&D

and patents in the productivity evolution. We provide a decomposition of the ben-

efits of R&D into the patent and non-patent components, and a novel measure of

the patent value conditioning on the firm’s R&D investment. Using a sample of Chi-

nese high-tech manufacturing firms, we find that (1) 47.8% to 67% of the benefits of

R&D investment comes from non-patent R&D activities; (2) On average an inven-

tion (a utility model) patent causes around 0.76 (0.66) percent increase in the firm

value; (3) The start-up costs of R&D are around ten times as large as the mainte-

nance R&D costs. The counterfactual analysis shows that the lump-sum subsidy is
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more effective than the proportional subsidy in increasing the expected firm value

and innovation probability. R&D continuers respond more actively than the R&D

starters to the R&D subsidy.

Keywords: dynamic R&D investment; patent; productivity; R&D subsidy
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1 Introduction

Innovation is a key engine of productivity growth. Quantifying the costs and benefits of

innovation activities is essential to understanding the firm’s incentives to innovate. Con-

sidering the innovation as a process of producing knowledge, R&D is the input while

patents are part of the output. This is formally analyzed in the previous econometric

models linking innovation outcome to the R&D investment and allowing the produc-

tivity to be only affected by the innovation output (Crépon et al., 1998; Mairesse et al.,

2005; Raymond et al., 2015). In these models, all of the returns to R&D is captured by the

innovation output, which is usually measured by patents.

Patents, however, are not a perfect measure for the outcome of innovation. In many

developing countries, the protection of intellectual property rights is often limited, mak-

ing firms in these countries less motivated to patent their invention. Even when the

patent law is perfectly implemented, not all inventions are patentable. In reality, a large

part of the innovation output is the accumulation of tacit knowledge that is difficult to

measure and/or patent.1 Therefore it is unlikely for firms to apply for patents to codify

all of their inventions. Regarding this situation, treating the patent as the sole innova-

tion output may lead to biased estimates for the returns to either R&D or patents. By

construction, including R&D or the patent alone in the evolution process of produc-

tivity prevents us from analyzing the structure of R&D benefits in terms of patent and

non-patent channels.

To address these limitations, in this paper we treat the patent as a part of the innova-

tion outcome and allow for other unobserved non-patent knowledge to affect the firm’s

future productivity. In particular, we treat R&D as the fundamental source of productiv-

1As illustrated by Hall et al. (2010), R&D generates an intangible asset, the firm’s knowledge base, which
contributes to profits in future years. The outcome of R&D is usually embedded in the human capital of the
firm’s employees, and is often hard to be codified.
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ity growth, but the marginal effect of R&D investment is affected by patent outcomes.

Our specification enriches the existing literature by incorporating both the impact of in-

novation input (R&D investment) and imperfectly observed innovation output (patents)

in the process of productivity evolution. This seemingly small change brings us eco-

nomic insights in understanding the internal structure of returns to R&D investment

through the patent and non-patent channels.

Our model is based on Peters et al. (2017) (PRVF hereafter) which provides a struc-

tural analysis of the costs and benefits of R&D investment in a unified empirical frame-

work containing both the innovation inputs (R&D) and outputs (observed process and

product inventions). In the PRVF model, R&D affects the probability of realizing innova-

tion outcomes, and the realized innovation outcome leads to productivity change. One

limitation of their framework is the researchers have to obtain accurate measures of the

innovation outcomes, which are usually not available in the commonly used datasets.2

To make things more difficult, in the survey firms are likely to hide their true information

on inventions from the interviewer to prevent imitation from their competitors.

We consider a more realistic setting where the R&D investment and some imper-

fect measures of innovation output jointly affect the productivity evolution. We follow

the main setup of the PRVF model, but introduce two changes: (1) instead of relying

on accurately measured innovation outcomes, we use patent counts as an indicator for

innovation outcomes; (2) we let productivity be dependent on R&D even after condi-

tioning on patents. In our framework, R&D is the fundamental source of productivity

change; its impact is determined by the realization of innovation outcomes. In PRVF,

they estimate two primitives regarding the innovation process. The first is the probabil-

ity of realizing innovation outcome conditional on the state of R&D investment, and the

2PRVF use the Mannheim Innovation Panel survey which contains the information on the introduction
of a new product or a new production process by each firm.
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second is the distribution of future productivity conditioning on the realized innovation

outcome. In our case, we replace the innovation outcome with the firm’s patent ap-

plications and estimate probability distribution similar to PRVF. Slightly differently, we

estimate the distribution of future productivity conditional on both R&D and patents.

Because the productivity gains depend on both R&D and realized patent applica-

tions, an advantage of our framework is the decomposition of returns to R&D invest-

ment into components related to patents (new codified knowledge) and non-patents

(new tacit knowledge) innovations. Another contribution of our empirical framework

is a novel estimator of the private patent value inferred from the increase in the firm

value. Different from Pakes (1986) where the value of holding a patent is determined

by solving an optimal stopping problem, we measure the realized value of a patent by

treating patent applications as a random outcome of R&D investment and conditioning

on the R&D investment. Our approach can be applied to any data sets with firm-level

information on R&D, patents, and production.

We estimate the model using a sample of Chinese high-tech manufacturing firms.

Our main findings from the structural estimates are as follows. First, on average R&D in-

vestment increases the expected firm value by around 0.223% (or around 0.109 million

USD) in the firm value. This value is much lower than that obtained by PRVF who found

that R&D investment increases firm value by 6.70 percent (around 4.41 million Euros)

for the median high-tech firm in a sample of German firms. This shows that Chinese

firms obtain much smaller returns to R&D than German firms. Second, a decomposi-

tion of the return to R&D shows that non-patent innovation accounts for a substantial

part of the total returns to R&D. This implies that a large part of the R&D benefits come

from the accumulation of tacit knowledge. Third, conditioning on R&D investment, the

average value of an invention (a utility model) patent is around .374 (.326) million USD.
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Lastly, the average start-up cost of R&D is over ten times as large as the average mainte-

nance cost. This suggests that R&D investment has high adjustment costs: starting an

innovation project is much more costly than maintaining an ongoing research project.

Lastly, R&D costs vary substantially across different industries, with the electronics in-

dustry being the highest.

Using the estimated model, we perform a series of counterfactual exercises to eval-

uate the effectiveness of different types of R&D subsidy policies. In particular, we com-

pare the effect per dollar lump-sum subsidy and proportional subsidy.3 To make differ-

ent subsidy programs comparable, we restrict that their expected payments are the same

before the implementation. The counterfactual exercises yield some interesting results.

First, for both types of subsidy programs, a reduction in maintenance costs causes a

greater increase in the firm value and innovation probability. Second, in terms of the

effect of one-dollar spending, the lump-sum subsidy is more efficient than the propor-

tional subsidy.

We explore the robustness of our counterfactual results by providing both theoret-

ical justifications and empirical analyses on the effects of subsidy programs. First, we

prove theoretically that when R&D costs follow an Exponential distribution, the lump-

sum subsidy always performs better than the proportional subsidy in increasing the firm

value at any subsidy rate. Second, we demonstrate that the lump-sum subsidy is more

effective than proportional subsidy in increasing the firm value when: (1) the probabil-

ity density function of R&D costs is a decreasing function of its argument; and (2) the

right tail of the probability density function is sufficiently thin. Third, guided by the

theoretical justification, we choose the Weibull distribution as a generalization of the

3The lump-sum subsidy is a government transfer that reduces R&D costs paid by the firm, while the
proportional subsidy is a proportional reduction in R&D costs at a fixed rate. If the amount of R&D costs is
c, the lump-sum subsidy reduces R&D costs to c− sl , and the proportional subsidy changes the R&D costs
to be (1− sp)c.
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Exponential distribution. We re-estimate our model for a set of different values for the

parameter governing the shape of the distribution. The counterfactual results confirm

that our benchmark results are robust to certain alternative distributions for the R&D

costs.

In another extension, we adapt our empirical framework to include firm ownership

as a determinant of R&D costs (and benefits). We find no significant difference between

SOEs and non-SOEs in terms of the start-up R&D costs, but SOEs tend to have signifi-

cantly higher maintenance R&D costs in some industries.

This study is closely related to the literature quantifying returns to R&D. The knowl-

edge capital model of Griliches (1979) has been a cornerstone of this literature. In their

framework, the investment in innovation by the firm creates knowledge stock, which is

similar to physical capital in the way that they enter into the production function. The

most important extension related to this paper is the econometric framework proposed

by Crépon, Duguet, and Mairesse (1998) (CDM hereafter) which estimates a reduced-

form model incorporates R&D, patents, and productivity. Recently, Raymond, Mairesse,

Mohnen, and Palm (2015) extends this framework to a dynamic setting. However, the

knowledge-stock approach faces the problem of estimating the firm’s knowledge stock.

It also rules out the high degree of intrinsic uncertainty facing innovation investment.

Our work is also related to the endogenous productivity approach in the literature on

R&D investment. In this strand of literature, the evolution of productivity is a controlled

Markov process with the current R&D investment increases the future productivity (Hall

and Hayashi, 1989; Klette, 1996; Aw et al., 2011; Doraszelski and Jaumandreu, 2013; Pe-

ters et al., 2017).

We contribute to these two strands of literature in two main aspects. First, we enrich

the literature on quantifying returns to R&D by providing a decomposition of the ben-
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efits of R&D into the patent and non-patent channels. The empirical finding suggests

that non-patent R&D investment plays a major role in returns to R&D. Second, we pro-

vide a new method of estimating the private value of patents. The empirical analysis in

this paper also provides a first structural analysis of the cost-benefits structure of R&D

and patents in China, thus contributing to the literature on the characteristics of inno-

vation by Chinese firms.4 Our estimation results indicate that non-patent innovation

accounts for most of the returns to R&D. We point out that the relatively small benefits

and high start-up R&D costs jointly contribute to the firm’s low participation in R&D in-

vestment in the sample period. Lastly, we provide a theoretical analysis of the relative

effectiveness of two popular types of subsidies and confirm the superiority of lump-sum

subsidies in scenarios of general distributions for the R&D costs.

The rest of this paper is organized as follows. In Section 2, we outline the R&D model,

illustrate the method of decomposing the R&D benefits as well as estimating the patent

value. Data are introduced in Section 3. We display the empirical results in Section

4. Section 5 presents the counterfactual analyses. In Section 6, we discuss two main

extensions of the model. Section 7 concludes the paper.

2 The Empirical Framework

In this section, we first briefly describe a standard dynamic model of R&D investment

and patent outcomes. The basic structure of the model is identical to PRVF, the only

difference is that we allow both R&D and patents play a role in shifting the distribution

of future productivity. Based on the model, we propose a new method of decomposing

the returns to R&D to patent and non-patent channels, as well as estimating the patent

value.
4See, for example, Hu and Jefferson (2009), Hu et al. (2017), and Chen et al. (2017).
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2.1 Model

In PRVF, a firm’s R&D decision changes the probability of realizing product or process

innovations, which affect the firm’s future productivity and expected profits. In their

specification, only the innovation outcome (process or product innovation) generated

by R&D activities has an impact on the firm’s future productivity and hence future prof-

its. In contrast, we allow both R&D investment and patents enter into the productivity

evolution equation while the creation of new ideas represented by observed patent ap-

plications affects the marginal effect of R&D on future productivity.

The model comprises four parts. The first part is the production function of patents

that links the firm’s distribution of patents to their R&D investment. The second compo-

nent is the cost function of investment in R&D, which is influenced by the firm’s previous

experience in R&D. The third component of the model links a firm’s patent activities with

the process of productivity evolution, in which patents and R&D alter the distribution

of the firm’s future productivity. The last component of the model determines the firm

value as a function of current R&D activities and future productivity. In equilibrium,

each firm chooses the optimal level of investment in R&D to maximize its firm value.5

R&D-patents linkage. We define two binary variables nit and bit , where nit , bit ∈ {0,1},

to represent patents for inventions and utility models, respectively. Detailed descrip-

tions of these two types of patents are provided in Section 3. nit = 1 (bit = 1) if firm i pro-

duces any invention (utility model) patents in year t. Let rdit be the firm’s R&D choice;

we use P(nit+1,bit+1|rdit) to represent the joint distribution of invention patents and util-

ity model patents conditional on the past decision on R&D, .

By formulating the R&D-patent linkage as a conditional joint distribution, we implic-

itly take the correlation between invention patents and utility model patents into con-

5As we show in the online appendix, this framework can easily be extended to accommodate the ad-
justment of R&D investment at the intensive margin.
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sideration. This can be caused by the idea diffusion inside the firm. We also expect that

firms engaging in R&D activities are more likely to produce invention or utility patents.

We abstract the possibility that different firms have different inclination to protect their

ideas by filing patent applications.

Revenue and profits. The demand is CES with an elasticity of substitution being σ .

The logged firm’s short-run production revenue is given by:

rit = (σ −1)(βkkit +βaait +φit)+µ0 +µt (1)

where kit is the log of the firm’s capital stock, and ait is the firm age.6 µ0 is a constant

term. µt is a year-specific variable common to all firms, which contains information on

factor prices. kit is treated as a fixed factor in the short-run. φit represents the revenue

productivity, which includes the firm’s production efficiency as well as the idiosyncratic

demand shifter. The firm’s short-run profits is:

πit =
1
σ

exp(rit) (2)

Productivity evolution. We extend the process of productivity evolution in PRVF by

assuming that both current R&D activity and future patent counts affect the firm’s future

productivity. In our specification, the effect of R&D investment on future productivity

depends on the patents. Specifically, the distribution of future productivity is affected

by a firm’s current productivity (φit), R&D activities (rdit), invention patents (nit+1), and

utility model patents (bit+1) in the next period. The evolution equation of the firm-level

productivity is given by:

6See Appendix B for the detailed derivation.
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φit+1 = h(φit ,rdit ,rdit ×nit+1,rdit ×bit+1)+ εit+1, (3)

where h(φit ,rdit ,rdit ×nit+1,rdit ×bit+1) is the conditional mean of future productivity and

εit+1 is an i.i.d stochastic shock normally distributed with zero mean and variance σ2
ε .

This formulation assumes that (1) a firm’s productivity is persistent over time, implying

that the future productivity will be correlated with its current productivity; (2) R&D and

patent counts jointly shift the mean of future productivity, with R&D being the funda-

mental source of endogenous productivity change; and (3) productivity change is in-

fluenced by stochastic shocks εit+1. More importantly, we allow the impact of R&D on

future productivity depends on the patent outcomes. To account for the difference be-

tween invention patents and utility model patents in affecting the firm’s future produc-

tivity, we allow that ∂h/∂nit+1 and ∂h/∂bit+1 to be different. It is worth noting that the

formulation of the process of productivity is different from that considered in PRVF. In

the specification of PRVF, only the innovation outcomes enter into the evolution process

of productivity. In other words, R&D investment can only affect productivity evolution

through the measured innovation outcome. In our setting, it is clear that R&D is the fun-

damental source of productivity growth, but the magnitude of its impact is determined

by the innovation outcome. Therefore, R&D investment has both direct and indirect

effects on productivity growth.

R&D costs and equilibrium. Following PRVF, the innovation cost is assumed to be

dependent on prior R&D experience and current capital stock. For firm i in year t, its

innovation cost Cit is given as:

Cit ∼ exp(κm× rdit−1× kit +κs× (1− rdit−1)× kit), (4)
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where exp(·) represents the exponential distribution. Hence the cost of investing in R&D

follows an exponential distribution with a mean of κmkit when rdit−1 = 1, and with a mean

of κskit when rdit−1 = 0. The innovation cost is observed by the firm, but not to us as

the econometricians. Therefore the innovation cost is an additional factor that affects

the firm’s behavior of investing in R&D. κm and κs can be different, implying that the

distribution of maintenance costs differ from start-up costs. κskit captures the start-

up costs when a firm did not participate in R&D activities in the previous period but

plan to undertake R&D investment in the current period. In contrast, κmkit reflects the

maintenance costs when a firm was active in R&D investment in the previous period and

continue to invest in R&D. kit enters the distribution of R&D costs because of the scale

effect that a firm with larger capital stock are required to hire more researchers and build

larger research labs. Throughout the estimation, we treat kit to be exogenous. The state

variables are sit = (φit ,rdit−1). The firm’s decision on R&D will affect the evolution of sit .

The firm’s expected value function V (sit) can be expressed as:7

V (sit) = π(φit)+ (5)∫
∞

0
max
rdit
{βEV (sit+1|φit ,rdit = 1)−Cit ,βEV (sit+1|φit ,rdit = 0)}dG(Cit),

where β is the discount factor. We define γit as the parameter for the exponential distri-

bution:

γit ≡ κm× rdit−1× kit +κs× (1− rdit−1)× kit ,

then G(Cit) = 1− exp(−Cit/γit) for Cit ≥ 0 and zero otherwise. The expected future value

7Note that the firm’s value function is

Ṽ (sit) = max
rdit

{
π(φit)− rditCit +EṼ (sit+1|sit ,rdit)

}
The integrated Bellman equation (5) is obtained by taking the expectation of the value function above with
respect to Cit .
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of the firm is an expectation over the future productivity levels and the count of patent

applications:

EV (sit+1|sit) = ∑
nit+1

∑
bit+1

∫
φ ′

V (sit+1)dF(φ ′|φit ,nit+1,bit+1,rdit)P(nit+1,bit+1|rdit) (6)

Note that (6) is composed of two parts representing two kinds of uncertainties facing

innovation. The first uncertainty comes from the creating of applicable patents (or cre-

ating new ideas); the second uncertainty comes from the response of future productivity

to future patenting activities and R&D decision in the previous year. The firm maximized

its firm value, which implies that a firm will choose to invest in R&D if and only if

∆EV (φit)≡ EV (sit+1|φit ,rdit = 1)−EV (sit+1|φit ,rdit = 0)≥Cit (7)

In equilibrium, a firm will only invest in R&D as long as the expected net benefit from

R&D is greater than the costs.

2.2 R&D benefits decomposition and patent value

R&D benefits and its decomposition. Following PRVF, the long-run benefits of R&D are

measured as the relative change in the expected firm value caused by R&D investment:

LB(φit) =
EV (sit+1|φit ,rdit = 1)−EV (sit+1|φit ,rdit = 0)

EV (sit+1|φit ,rdit = 0)
(8)

One novelty of the current paper is a decomposition of R&D’s returns into the patent

and non-patent channels. Conditioning on that a firm is undertaking R&D investment,

its expected value is a weighted average of different states of the realization of patents

(nit+1,bit+1). When the patent count is zero and the firm is active in R&D investment,
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that is (nit+1,bit+1,rdit) = (0,0,1), the firm benefits solely from the non-patent channel,

which is given by:

LBN(φit) = P(0,0|1)
∫

φ ′
V (sit+1)dF(φ ′|φit ,0,0,1), (9)

Similarly, the R&D benefits through the realized patent is:

LBP(φit) = ∑
{n′,b′:n′+b′>0}

P(n′,b′|1)
∫

φ ′
V (sit+1)dF(φ ′|φit ,n′,b′,1) (10)

While the benefits of R&D (LB) are interesting by themselves, the decomposition of

LB into the patent and non-patent channel provides a deeper view of the internal struc-

ture of R&D benefits. Since LBp contains information on the firm’s patent value that is

reflected in the productivity growth, the relative importance of LBp in total R&D benefits

is closely related to the quality of the patent system. When LBN plays a dominant role in

the total benefits of R&D, we can expect that the value of the patent is not so valuable

and most of the R&D benefits are realized simply through non-patent activities such as

knowledge accumulation.

Patent value. In Pakes (1986), the distribution of returns from holding patents is

estimated by solving the patentee’s optimal stopping problem of whether renewing the

patent or not. Introducing patent counts into the productivity evolution enables us to

analyze the patent value using a new approach. To obtain the value of patents, we need

to condition on the firm’s R&D investment since R&D investment is the fundamental

source of patents and productivity growth. For firms not participating in R&D, the patent

plays no role in stimulating the firm’s future productivity growth. After conditioning on

the R&D investment, the realized patent will influence the productivity effects of R&D,

which ultimately affects the firm value. Following this logic, we define the long-run value
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of an invention patent as:

V Pinv(φit) = ln

[
∑

b′∈{0,1}
Pr(b′|nit+1 = 1)EV (sit+1|φit ,1,b′,1)

]
︸ ︷︷ ︸

firm value when an invention occurs: V P1
inv(φit)

(11)

− ln

[
∑

b′∈{0,1}
Pr(b′|nit+1 = 0)EV (sit+1|φit ,0,b′,1)

]
︸ ︷︷ ︸

firm value when no invention occurs: V P0
inv(φit)

,

where Pr(b′|nit+1 = n′) is the probability of the event bit+1 = b′ conditional on nit+1 = n′. In

a similar way, we can compute the value of a patent of utility model:

V Puti(φit) = ln

[
∑

n′∈{0,1}
Pr(n′|bit+1 = 1)EV (sit+1|φit ,n′,1,1)

]
︸ ︷︷ ︸

firm value when a utility model occurs: V P1
uti(φit)

(12)

− ln

[
∑

n′∈{0,1}
Pr(n′|bit+1 = 0)EV (sit+1|φit ,n′,0,1)

]
︸ ︷︷ ︸

firm value when no utility model occurs: V P0
uti(φit)

.

Then the expected firm value when a firm invests in R&D can be decomposed as:

EV (sit+1|φit ,rdit = 1) =Pr(nit+1 = 1)V P1
inv +(1−Pr(nit+1 = 1))V P0

inv (13)

=Pr(bit+1 = 1)V P1
uti +(1−Pr(bit+1 = 1))V P0

uti,

where the unconditional probabilities Pr(nit+1 = 1) = P(1,0|1)+P(1,1|1) and Pr(bit+1 =

1) = P(0,1|1)+P(1,1|1). In principle, the patent value is defined for each firm. Even if

this firm does not submit any patent applications, the formulae (11) and (12) delivers

the shadow value of a potential patent. To make the results comparable with existing

literature, one can estimate the value of patent focusing on observations with positive
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counts of patent.

In what follows, we employ the empirical framework to analyze a sample of Chinese

high-tech manufacturing firms. We first introduce the data source, then we explain the

estimation procedures and the estimation results.

3 Data

3.1 Data sources

Firm-level production data. The first data set contains information on the large and

medium-sized Chinese manufacturing firms from 2001 to 2007 complied by China’s

National Bureau of Statistics (CNBS hereafter). This data set is widely used in studies

on Chinese firms (See Hsieh and Klenow (2009), Song et al. (2011), and Brandt et al.

(2012) for example). This data set includes all Chinese State-Owned Enterprises (SOEs

hereafter) and non-SOEs with annual sales no less than five million Renminbi (equiv-

alent to about 700,000 US dollars). These firms account for 98% of the manufacturing

exports. This data set contains all the information about the firm’s major accounting

sheets, which includes more than 100 financial variables. Serving for this study, it in-

cludes firm sales, number of employees, material input, fixed assets, R&D expenditures,

and other firm characteristics like firm age and its industrial code. In summary, this rich

data set provides information on firm-level production activities. We follow Brandt et al.

(2012) to clean the dataset and focus a sample of high-tech manufacturing firms from

this dataset.8

Patent data. The second database is on patent statistics collected by the State Intel-

8Focusing on high-tech firms help alleviate the concern that many firms may fail to report their R&D
expenditures. This is because high-tech firms usually undertake a large amount of R&D investment, and
the possibility of not reporting small R&D expenditures is much lower than the non-high-tech industries.
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lectual Property Office (henceforth SIPO) of China. It contains all the patents that are

applied by Chinese firms and granted in mainland China. For each patent, the database

provides information on its type (invention, utility model, and design), owner, applica-

tion time, certification time, the agent of application, abstract, location, and expiration

time during 1985 and 2012. But it should be noted that there is no information on cita-

tions for patents in the database, which makes it difficult to measure the patent quality

directly. According to China’s Patent Law, the utility model refers to a new technical so-

lution suitable for practical use proposed for the shape, construction or combination

of the products.9 Generally, an invention patent is also related to a new technical solu-

tion proposed for the product, method, or its improvement. But the patenting process

for invention patent consists of a “substantive review” which specifically emphasizes on

the novelty and originality of the breakthrough in technical upgrading. Lower creativ-

ity standards are enforced for utility model patents.As for design patents, they represent

more rudimentary types of innovation and are considered to be of lower quality than in-

vention patents and utility model patents.10 Therefore we anticipate that design patents

is less related to the firm’s productivity. Considering this, we focus on invention patents

and utility patents in the empirical investigation.

Final combined database. We follow He et al. (2018) to match the aforementioned

two datasets.11 In the last row of Table 1, we show that across all years, the total num-

9According to WIPO, utility models are sometimes referred to as “short-term patents”, “utility innova-
tions” or “innovation patents”......In general, utility models are considered particularly suited for protecting
inventions that make small improvements to, and adaptions of, existing products or that have a short com-
mercial life.

10According to Article 22 of the Patent Law of the P.R.C.: any invention or utility model for which patent
right may be granted must possess novelty, inventiveness and practical applicability. In comparison, the
requirement for the approval of design patents is in Article 24 of the Patent Law of the P.R.C as “. . . . . . must
not be identical with or similar to any design which, before the date of filing, has been publicly disclosed in
publications in the country or abroad or has been publicly used in the country, and must not collide with
any legal prior rights obtained by any other person.”

11Unfortunately name is the only information that appears in both the NBS survey and the patent data.
He et al. (2018) designed data parsing and pre-processing routines to clean and stem firm and assignee
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ber of invention patents in our merged data accounts for over 50% of the total number of

patent reported in the China Statistical Yearbook on Science and Technology.12 This sug-

gests that the merged dataset captures the majority of the patenting activities in China.

In Table 1, we also report the total number of invention- and utility-patents across years.

Note that there is a strong upward trend for both patent types over our sample period.

The upward trend of patent counts consistently reflects the explosive growth of patents

during this period, which is well documented in the literature.13.

Table 1: Patent counts in the merged database and matching efficiency

year 2001 2002 2003 2004 2005 2006 2007
invention 1982 4462 5333 7993 10100 17033 19750

utility model 4202 5649 7496 7798 10720 15324 18212
matching 57.10% 81.26% 96.35% 87.20% 57.58% 67.33% 55.67%

Note: matching efficiency refers the ratio of number of invention patents in the merged dataset
to the published figures in China Statistical Yearbook on Science and Technology 2001-2007.

3.2 Descriptive statistics

China’s high-tech industries mainly cover four 2-digit industries: pharmaceutical man-

ufacturing, special equipment, electric machinery, and electronics. In Table 2 we report

the summary statistics for the R&D and patenting activities in the final dataset. The

average R&D expenditure for high-tech manufacturing firms is 218.095 thousand yuan

names for the Chinese manufacturing firms from 1998-2009, and created the matching algorithm tailored
for the NBS and patent data. The algorithm maintains a balance between matching accuracy and workload
of the manual check. We also implement a systematic manual check process to filter out false positives
matches. As we only focus on high-tech industries between 2001 and 2007, our sample size is much smaller,
so the workload of manual checking is manageable.

12The ratio varies across years, with 55.57% in 2007 and 96.35% in 2003. This is probably because
the census data only contains large and medium-sized Chinese manufacturing firms, while the aggregate
statistics on patent counts are for all Chinese firms including many other non-manufacturing sectors.

13According to the World Intellectual Property Organization (WIPO), The number of domestic invention
patent filings with the Chinese patent office (SIPO) has increased at an average annual rate of 32% during
the period 1999–2013. Many different explanations for the stunning growth has been discussed (e.g., Hu
and Jefferson (2009); Eberhardt et al. (2016); Hu et al. (2017); Chen and Zhang (2019))
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(equivalent to around 31,584 US dollars). The R&D intensity measured by total R&D ex-

penditures over total sales is lower than that reported for developed countries. Lastly,

compared to R&D participation, we observe that the probability of generating a patent

is relatively low. Even we focus on high-tech firms, the pooled probability of generating

an invention patent application is only 5.6%.

Table 2: Summary statistics for high-tech and non-high-tech industries

High-tech Non-high-tech

Variable Mean Std. Dev. Mean Std. Dev.
R&D expenditures 218.095 963.152 34.886 326.677
R&D/employees 1.794 8.327 0.282 4.686
R&D/sales 0.007 0.024 0.001 0.008
Pr(R&D>0) 0.289 0.454 0.106 0.307
Inventions 0.056 0.776 0.010 0.306
Utility models 0.083 1.058 0.028 0.376

Note: the unit of R&D expenditures is 1,000 yuan (around 150 US dollars).

In Figure 1, we present the number of firms for each 2-digit high-tech industry by

their innovative activities. We find consistent patterns across industries: only a small

portion of firms in these high-tech industries invest in R&D, an even smaller fraction

of them file for patents. Moreover, the difference between the number of firms filing for

patents and the number of firms having R&D is substantial across all industries, suggest-

ing it may be important to distinguish innovation inputs and innovation outcomes. The

smaller fraction of patenting firms also indicates that innovative firms may face great

uncertainty in generating patents.

3.3 Quality of R&D data

Mairesse et al. (2005) provides evidence on the substantial measurement error of us-

ing R&D expenditures to predict the innovation probability for the firm-level data from
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Figure 1: Number of Firms by Innovation Activities
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Note: numbers are from the final database

the French innovation survey. More related, Chen et al. (2017) document that corpo-

rate income tax reductions induce Chinese firms to relabel administrative expenses as

expenditures on R&D. These results suggest that the levels of R&D may not accurately

reflect the firm’s actual investment in innovation. In appendix A.2, we also show that the

extensive margin of R&D and patents captures most of the innovation effects. Therefore

we prefer using the information on the R&D choice at the extensive margin as PRVF did.

The estimation methodology does not require the researchers to have information on

the intensive margin of R&D investment. Instead, it assumes that the econometrician is

ignorant about the true R&D costs paid each firm, therefore to some extent it is robust

to measurement errors in R&D data at the intensive margin. As long as the extensive-

margin status of R&D is measured correctly, the PRVF method still holds when the dis-

tribution of R&D costs is well assumed.
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In our model, a firm’s current state includes its R&D choice in the previous period.

Firm i is undertaking start-up R&D if (rdit−1,rdit) = (0,1), and is participating mainte-

nance R&D if (rdit−1,rdit) = (1,1). The start-up R&D is not the innovation expenses for a

new project as we do not have information on the operation of research projects by each

firm. In this sense, our definition of different types of R&D is loose and only reflects the

continuity of R&D investment in a two-period fashion. For later estimation, we require

a firm to exist for at least two consecutive years to identify the firm’s R&D status in the

past and current periods.

Figure 2: Transition probability for start-up and continuing R&D
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Note: the probability of start-up R&D is calculated as Pr(rdit = 1|rdit−1 = 0) = ∑i,t 1(rdit =
1)/∑i,t−1 1(rdit−1 = 0), and the probability of continuing R&D is computed as Pr(rdit = 1|rdit−1 =
1) = ∑i,t 1(rdit = 1)/∑i,t−1 1(rdit−1 = 1).

In Figure 2, we show the probabilities for start-up and maintain R&D. In the sam-

ple, 80% of firms that undertake R&D investment in the current period tend to continue

their R&D investment in the next period, but only around 10% of non-R&D participants

would ever start new R&D investment in the next year. This implies that firms face a

high adjustment cost for R&D investment, which is consistent with the R&D literature
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documenting that firms tend to smooth R&D spending over time because of a long time

between conception and commercialization (Hall et al., 1986; Lach and Schankerman,

1989; Hall et al., 2010). Our finding is also consistent with the pattern of the transition

dynamics of R&D status in recent studies using firm-level datasets from other coun-

tries or regions, such as Aw et al. (2011) for Taiwanese firms and Peters et al. (2017) for

German firms. We also notice that according to our definition of R&D starters and con-

tinuers, the R&D starters are smaller than R&D continuers in terms of capital stock, the

total number of employees. Also, the R&D starters are, on average, two years younger

than the R&D continuers.14 Unfortunately, we are not able to identify whether firms stop

R&D or fail to report it. If firms fail to report it, we may over-estimate the probability of

R&D starters and hence the estimates of start-up costs of R&D are biased downward.

4 Estimation and Results

The empirical method we use follows PRVF closely with only one exception: we in-

clude both R&D and patents in the productivity evolution. In PRVF, they estimate to

primitives regarding the impact of R&D investment: (1) Pr(innovation|R&D), and (2)

Pr(productivity|innovation). In our case, we still estimate (1), but (2) becomes the distri-

bution of productivity conditional on innovation and R&D investment. Instead of using

a direct measure of innovation outcome, we use patent counts as the indicator for inno-

vation. In addition to computing the total benefits of R&D, we provide a decomposition

of R&D benefits into the patent and non-patent channels. We also estimate the average

value of a patent.

14See the data appendix for relevant statistics.
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4.1 Productivity estimation

Revenue equation. We parameterize the productivity evolution process as a cubic func-

tion of lagged productivity:

φit+1 =ρ0 +ρ1φit +ρ2φ
2
it +ρ3φ

3
it (14)

+ρ4rdit +ρ5 (nit+1× rdit)+ρ6 (bit+1× rdit)+ εit+1,

where the first line on the right-hand side captures the persistence in productivity tra-

jectory, the second line describes the impacts of R&D and patents on the evolution of

productivity. It is clear that past R&D activity and patent counts jointly affect the future

productivity. In particular, we have ∂ 2φit+1
∂ rdit ∂nit+1

= ρ5 and ∂ 2φit+1
∂ rdit ∂bit+1

= ρ6. These two second-

order partial derivatives clearly state that the impact of R&D investment (the innovation

input) on productivity is affected by patents (the innovation outcome). We expect that

ρ5 and ρ6 are different from each other because different types of patents represent dif-

ferent forms of realized innovation. These two parameters also give us information on

the quality of patents and the effectiveness of the patenting system. When they are pos-

itive, patents help strengthen the productivity effect of R&D investment. It is also pos-

sible that they are positive, implying that submitting patent applications weakens the

productivity premium caused by R&D investment.15 We estimate the productivity using

the first-order condition of materials.The demand for materials is dependent on the ob-

served capital stock, age, and unobserved productivity. This gives us an expression for

productivity:

φit−1 =

(
1

1−σ

)
βt−1 +βkkit−1 +βaait−1−

1
1−σ

mit−1 (15)

15This may be because of the leakage of key information on production technologies to the firm’s com-
petitors, which ultimately pulls down the demand facing the firm and reduces the revenue productivity.
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where βt represents the intercept of the CES demand function and the price of variable

inputs common to all firms. Combining (14) and (15), then plugging them into (1) yields

an empirical equation for the firm revenue:

rit =(1−σ)βkkit +(1−σ)βaait (16)

−ρ1 [βt−1 +βk (1−σ)kit−1 +βa (1−σ)ait−1−mit−1]

− ρ2

1−σ
[βt−1 +βk (1−σ)kit−1 +βa (1−σ)ait−1−mit−1]

2

− ρ3

(1−σ)2 [βt−1 +βk (1−σ)kit−1 +βa (1−σ)ait−1−mit−1]
3

− (1−σ) [ρ4rdit−1 +ρ5 (nit × rdit−1)+ρ6 (bit × rdit−1)]+µ0 +µt + vit

where vit = uit − (1−σ)εit , with uit being the measurement error to the revenue and ex-

ogenous to the firm’s decisions on choosing variable inputs or investment in R&D. The

estimation of (16) relies on the condition that the composite error vit is uncorrelated

with all the explanatory variables on the right-hand side. µ0 is an intercept which com-

bines constants from the revenue function and the productivity process. µt and βt−1 are

functions of the common time-varying variables including the demand intercept and

factor prices. The higher-order powers on φit−1 enables us to distinguish βt−1 from µt

and identify up to a base-year normalization. We follow PRVF and employ a two-step

estimation strategy. In the first step, we estimate the demand elasticity. In the second

step, we replace σ with its estimates and estimate (16) using the Non-linear Least Square

estimator.

Demand elasticity. For each industry, note that the ratio of total variable costs to firm

revenue VC/R is equivalent to (1−1/σ). Therefore, for industry j, we can estimate σ by

using the average of the ratio of variable costs to revenue. Table 3 reports the estimation

results. Notice that σ varies across industries. For the electronics industry, the estimate
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of σ is 6.34, the corresponding markup is 1.187. In comparison, for the machinery indus-

try, the demand elasticity is estimated to be−5.043, implying a markup of 1.247. We can

also find that the estimates of σ are smaller than that obtained by PRVF using German

data. This indicates that Chinese high-tech firms have a lower markup than German

high-tech firms.

Table 3: Estimates of the demand elasticities

industry pharmaceutical equipment electronics machinery

σ̂ 5.926 5.043 6.341 5.415
σ̂

σ̂−1 1.203 1.247 1.187 1.227

Productivity evolution equation. We plug the estimates of σ into (16) to estimate the

parameters for the productivity evolution equation. Table 4 reports the full estimation

results. Column (1) shows the estimation results of including rdt , nt+1× rdt , and bt+1×

rdt in addition to 3d order polynomials of current productivity. The estimation results

show the impact of R&D on productivity hinges on the patenting activities. Note that

the marginal effect of rdt on the expectation of future productivity is ρ4 +ρ5nt+1 +ρ6bt+1,

the estimates of which are as follows:

∆E(φt+1|φt ,rdt)

∆rdt
= .00435+ .0145×nt+1 + .0137×bt+1

This indicates that patents play an important role in enhancing the productivity effect

of R&D. If we think of a firm with positive investment in R&D in the current period, then

the expected increase in productivity would be .0145
.00435 ≈ 3.33 times greater if it produces

an invention patent at the end of this period and .0137
.00435 ≈ 3.15 times greater if it generates

a utility model patent. In the current model, patents are channels through which R&D

spurs productivity growth. This is different from the PRVF model in which the impact of
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R&D on future productivity is fully captured by realized process or product innovation.16

Table 4: Estimates of productivity evolution equation and cost function

cubic parameterization

Productivity evolution:
rdt .00435∗∗ (2.90)
nt+1× rdt .0145∗∗ (2.90)
bt+1× rdt .0137∗ (2.76)
φt .824∗∗ (14.96)
φ 2

t .503∗∗ (2.69)
φ 3

t -1.135∗∗ (-14.26)

ρ0:
common part .0295∗∗ (8.34)
Pharmaceutical -.0144∗ (-3.90)
Electronics -.0132∗∗ (-3.61)
Electric Machinery -.0116∗∗ (-2.92)
σε .10

Cost function:
k -.0299∗∗ (-25.82)
a ∈ (10, 19) .0740∗∗ (12.62)
a ∈ (20, 49) 0.111∗∗ (12.88)
a≥ 50 .149∗∗ (7.84)

sample size 22492
Note: T statistics are in parentheses; * p<0.05, ** p<0.01.

For the endogenous productivity approach, an implicit condition for a firm to be ac-

tive in innovative activities is that the productivity cannot increase or decrease too fast

in order for it to innovate. Otherwise, the productivity is unbounded in the future, which

discourages firms from investing in R&D. The estimation results show that the revenue

productivity is between -0.454 and 0.817, which implies that the absolute value of the

16PRVF find that the coefficient of realized process innovation is 0.029 and that of realized product in-
novation is 0.036 for German high-tech firms. However, we find it difficult to directly compare our results
with theirs. This is because, according to the Chinese patent law, the classification of inventions and utility
models is not based on that whether they are related to process innovation or product innovation, but on
the level of originality, the examination procedures, and the speed of granting.
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first-order derivative of expected future productivity with respect to current productiv-

ity is less than one, thus satisfying the requirement for the value function estimation. In

the appendix, we display the range of this slope. We also try a quadratic specification in

which only the first- and second-order of φt are included. However, in this case, the frac-

tion of observations that violates this assumption is not negligible; the corresponding

results are displayed in appendix A.3.

4.2 R&D-patents relation

By formulating the R&D-patent linkage as a conditional joint cumulative distribution

function, our model accounts for the correlation between patent applications for inven-

tions and for utility models. This can be caused by knowledge spillovers across different

research projects within the firm. We also expect that firms engaging in R&D activities

are more likely to produce patentable inventions and utility models. Lastly, we do not

model the possibility that different firms have different inclination to protect their ideas

by creating patents. By selecting high-tech industries, we try to alleviate the concern

that some firms may not want to protect their innovation via patenting because it is

likely that high-tech firms file patent applications when they create new ideas. In addi-

tion, our sample period starts from 2002, before which China has implemented several

amendments to the patent laws aimed to strength the protection of intellectual property

rights (Hu and Jefferson, 2009). As a result, our measure is an average of the industry-

specific propensity of submitting patent applications.

We estimate the probability of producing applicable patents conditional on the firm’s

past R&D status. For notation simplicity, P(nt+1 = n′,bt+1 = b′|rdt) is denoted as P(n′,b′|rdt).
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For each industry, these conditional probabilities are estimated by

P̂
(
n′,b′|d

)
=

∑i ∑t I(nit+1 = n′)I(bit+1 = b′)
∑i ∑t I(rdit = d)

(17)

where I(·) is the indicator function and n′,b′,d ∈ {0,1}. This procedure imposes that

the probability of filing patent applications only depends on the firm’s past R&D activ-

ity. Moreover, the technology of generating patent applications is common to all firms

within the same industry.

Table 5: Distribution of patent applications conditional on R&D investment

Industries p(0,0) p(1,0) p(0,1) p(1,1)

pharmaceutical 0.903 0.085 0.007 0.005
equipment 0.826 0.012 0.115 0.047
electronics 0.899 0.009 0.069 0.023
machinery 0.857 0.015 0.094 0.035

Note: p(x,y) = Pr(nt+1 = x,bt+1 = y|rdt = 1).

The results are displayed in Table 5. Innovation probabilities differ across industries.

The overall probability of generating an invention or a utility model is very low; most

firms undertaking R&D investment are not able to generate any patentable innovation.

While the pharmaceutical industry is better at producing invention patents, the other

three high-tech industries create more utility models. This may imply that “major in-

novation” is more prevalent in the pharmaceutical industry, but “minor innovation” is

more common in other high-tech industries. This may reflect that Chinese high-tech

firms are technological lagged behind and concentrate more on utility models that are

of a short commercial life. Last but not the least, there is a certain probability that firms

simultaneously generate invention patents and utility models.
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4.3 R&D costs and benefits

The firm’s probability of investing in R&D is

Pr(rdit = 1|φit ,rdit−1) =Pr [∆EV (φit ,rdit−1)≥Cit ] (18)

=1− exp
[
−β (EV1−EV0)

γit

]
,

where the second equality is based on the assumption that R&D costs follow an expo-

nential distribution. Recall that γit = κm× rdit−1× kit + κs× (1− rdit−1)× kit . Given the

firm’s capital stock and past R&D choice, κs and κm determines the distribution of R&D

costs. The cost function links R&D expenditures to capital stock. The identification of

κ’s relies on the status of R&D investment in the previous period as well as in the current

period. Conditional on the firm’s past R&D status, the current productivity, and the cap-

ital stock, the R&D investment in the current period is associated with R&D costs which

are shaped by κs and κm. The relative variation in current and past R&D status allows us

to identify κ’s.

Equation (18) also indicates that β can not be separated from γit . Therefore we em-

ploy the annual deposit rate to set the value for β . Let R̄ be the average real annual

deposit rate. We follow Song et al. (2011) to choose the annual real deposit rate to be

R̄ = 1.1075, and hence β = 1/1.0175 = 0.983.

We follow Rust (1987) to apply the nested fixed-point algorithm to estimate the dy-

namic discrete choice model. To implement this algorithm, we discretize the productiv-

ity space into 100 grid points, the capital stock into 50 grid points. Remember that we

have 4 categories of ages and two states for past R&D experience. Therefore, we estimate

the value function for 100× 50× 4× 2 = 40000 types of firms. We use the methodology

proposed by Farmer and Toda (2017) to discretize the non-linear Markov process spec-

29



ified for the productivity evolution. Finally, we assume that the costs are i.i.d across all

firms and periods, then the cost parameters can be estimated using the Maximum Like-

lihood Estimator (MLE) obtained by solving the following problem:

max
(κm,κs)

{
N

∑
i

Ti

∑
t

log [rdit Pr(rdit = 1|φit ,rdit−1)+(1− rdit)Pr(rdit = 0|φit ,rdit−1)]

}
(19)

where N is the sample size of the firm, Ti is the number of periods in which firm i exists

in the data. The details of computation are presented in appendix C.

In Panel A of Table 6, we display the estimation results of (κs,κm). For all Chinese

high-tech industries, we find that the start-up costs of investing in R&D are over ten

times larger than maintenance costs. The estimates also show substantial variation

in expenditures on maintaining and continuing R&D for different high-tech industries.

The electronics industry has the largest start-up costs and maintenance costs. This sug-

gests that R&D investment in developing new technologies and ideas on producing elec-

tronic products is more costly. On the other hand, the pharmaceutical industry has the

lowest start-up costs while the machinery industry has the least maintenance costs.

To see these results more clearly, we translate these estimates into average R&D costs.

The average R&D cost is calculated by plugging the industrial average capital stock into

the mean value of the specified distribution of R&D costs.17 We report the results in

Panel B of Table 6. The average start-up costs lie between .810 million US dollars for the

pharmaceutical industry to 2.331 million US dollars for the electronics industry. While

the maintenance costs range from 86 to 140 thousand US dollars. The difference in mag-

nitudes of start-up costs and maintenance costs help explain the high persistence in the

R&D investment. We have shown in the data section that firms tend to continue their
17Recall that the mean of R&D costs distribution is γi = (1− rdi)κski + rdiκmki for a firm i. Let k̄ j be the

industrial average capital stock, then the average start-up (maintenance) R&D costs is γ̄s
j = κsk̄ j (γ̄m

j = κmk̄ j).
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Table 6: Estimation results of R&D costs

Panel A : Estimates for the costs parameters
Industries Pharmaceutical Equipment Electronics Machinery
κs .9125 1.7752 2.8111 1.1743

(.4669) (.0294) (.1233) (.0877)
κm .1116 .1069 .1685 .1052

(.0165) (.0005) (.0026) (.002)
LLF -4163.4 -344 -3209.3 -1554.1
sample size 8603 939 9308 3604
Panel B : Average R&D costs
Start-up costs 0.810 1.470 2.331 0.961
Maintenance costs 0.099 0.089 0.140 0.086

Note: Standard errors in the parenthesis are obtained by bootstrapping 100 times. The currency
unit for R&D costs is million US dollars.

previously started R&D investment at a high probability. The relatively low maintenance

costs and high start-up costs provide a good match to the data, showing that firms need

to pay a large adjustment cost for R&D investment.

Because our estimation does not require the econometrician to know the actual R&D

spending, the unobserved R&D costs are backed out as a parameterized distribution.

The uncovered R&D costs parameters (κm,κs) are common to all firms within the indus-

try, with the firm-level capital stock being the only idiosyncratic component affecting

the mean value of the R&D costs. Consider two firms operating in the same industry

and are of the same level of capital stock, they would face the same R&D costs according

to our setting. Though the current assumption is restrictive, it can easily be relaxed to

include other observable firm characteristics that also affect R&D costs.18 In the case of

China, firm ownership may also be an important determinant for the firm’s R&D costs

as State-Owned firms receive preferential R&D subsidies. In the section for extension

18For example, Peters et al. (2016) added a financial strength variable to the specification of the distri-
bution of R&D costs and analyzed the importance of financial strength on the costs and benefits of R&D
investment.
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and robustness, we extend the current empirical framework to accommodate such situ-

ations.

The model contains several pieces and are estimated in different stages. To check

how the estimated model fits the data, we first check the closeness between the model-

predicted revenue and the data. Then we compare the model-generated R&D activities

with the data from two angles: (1) as a cross-section check, we consider the pooled prob-

ability of investing in R&D; (2) We also examine if transition dynamics for R&D generated

by the model fits the data well. Overall, the estimated model provides a good match for

these moments in the data, giving us the confidence to perform further structural anal-

ysis on the benefits of R&D and patents. The details of these results are presented in

Appendix B.

4.4 Benefits of R&D investment

4.4.1 Aggregate results

The short-run benefits of R&D investment is directly reflected by the changes in produc-

tivity, which ultimately influences sales and profits in subsequent periods. In compar-

ison, the long-run gains of R&D can be captured by the changes in the firm’s expected

future value.19 We also report the absolute change in firm value to evaluate the long-

run benefits of R&D more completely. Note that the measure of benefits is independent

of past R&D activities. However, past R&D activities will affect the current innovation

choice jointly with the expected benefits from investing in R&D. We present the estima-

tion results in Table 7. We can find that the percentage change in the firm value caused

by R&D investment ranges from 0.0287 % to 0.0330 %. On average R&D investment

19Note that under the CES demand structure, the proportional change in the profits is the same as that
in revenue.
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causes around 0.031 % increase in the annual revenue.

Table 7: Short-run and long-run benefits of R&D investment

sectors Pharm. Equip. Elect. Mach. Average
Panel A: Short-run
∆ pct. 0.0287 0.0300 0.0330 0.0302 0.031
Panel B: Long-run
∆ pct.
mean 0.205 0.208 0.239 0.230 0.223
median 0.205 0.218 0.242 0.238
std 0.071 0.051 0.080 0.068
∆ abs.
mean 0.101 0.086 0.127 0.089 0.109
median 0.095 0.084 0.115 0.085
std 0.046 0.031 0.062 0.038

Note: the absolute change is measured in million USD; the average is a weighted average using
the sample size.

Despite that the increase in the firm’s annual sales is relatively small, the effect of

R&D is amplified in the long-run. This is because historical R&D spending can exert an

impact on current productivity and hence the firm value. The estimation results show

that innovation spurs around a 0.223% increase in the firm value, with the electronics

industry the highest (0.239%) and the pharmaceutical industry the lowest (0.205%). The

median of the long-run benefits is close to the mean value, indicating that the distri-

bution is not very skewed. Inspecting the absolute change in firm value, we know that

on average the investment in innovation increases the firm value around 0.109 million

USD for Chinese high-tech firms. Different high-tech industries have different returns

to R&D. On average, firms operating in the electronics sector increases their firm value

by 0.127 million USD from R&D investment, while this number is 0.089 in the machinery

industry. We also notice that the median value is slightly lower than the mean, imply-

ing that the distribution is slightly right-skewed. Interestingly but not surprisingly, the
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benefits of R&D investment in Chinese high-tech industries are much lower than that

obtained for German high-tech firms. In PRVF, the median of the absolute change in

firm value for high-tech industries in Germany ranges from 2.331 million euros to 6.770

million euros. The lower private return to investment in R&D speaks partly for the less

willingness for Chinese firms to participate in innovation activities.

4.4.2 Decomposing the benefits of R&D

Based on (9) and (10), we decompose the benefits of R&D into four components: (1)

no patent; (2) only invention patents; (3) only utility model patents; (4) co-existence of

inventions and utility models. In Table 8 we present the average of R&D benefits for each

high-tech industry measured by proportional change and absolute change in the firm

value, respectively. As a reference, we also show the mean value of total R&D benefits

in the row titled ‘total’. The results consistently show that creating patents increases

the benefits of innovation dramatically. In the pharmaceutical industry, when there is

no patent application, the proportional change in firm value is only 0.152%, and the

absolute change in firm value is 0.075 million USD. In sharp contrast, when invention

patents and utility patents occur, the corresponding change becomes 1.186% and 0.588

million USD. This large difference implies that the patent contributes to private returns

to the R&D investment.

Our previous results, however, do not account for the uncertainty of the realization

of different states. To understand more about the relative importance of each compo-

nent of the innovation activities, we multiply each component of R&D benefits by their

probability of realization in Table 9. Note that by considering these probabilities, we

can calculate the actual contribution of each component in the benefits of R&D invest-

ment. Not surprisingly, for all high-tech industries the case of no patent application is
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Table 8: Decomposition of the Long-run benefits of R&D investment

Pharmaceutical Equipment Electronics Machinery
proportional change:
no patent 0.152 0.120 0.169 0.144
invention 0.672 0.530 0.749 0.638
utility model 0.643 0.507 0.717 0.610
both 1.186 0.930 1.323 1.121
total 0.205 0.208 0.239 0.230
absolute change:
no patent 0.075 0.050 0.090 0.056
invention 0.333 0.220 0.398 0.247
utility model 0.319 0.210 0.380 0.237
both 0.588 0.385 0.702 0.435
total 0.101 0.086 0.127 0.089

Note: the absolute change is measured in million USD.

the largest component in the benefits of R&D because of the low probability of generat-

ing patents. As for the importance of creating invention patents or utility patents, their

relative importance varies over industries. This is mainly driven by the difference in in-

novation probabilities Pr(nt+1 = n′,bt+1 = b′). On average, we find that non-patent R&D

investment accounts for between 48% to 67% of returns to R&D, implying that the re-

alization of a large part of the R&D benefits comes from non-patent activities such as

the accumulation of tacit knowledge that are not patentable. For the pharmaceutical

industry, the relative importance of invention patents is 2.0%, while for other high-tech

industries, the contribution of invention patents is only around 27.9%. In contrast, the

contribution of utility model patents in these industries is over 20%, much larger than

the 2.2% in the pharmaceutical industry. This is because firms in the pharmaceutical in-

dustry have a higher chance of creating valuable invention patents than other high-tech

industries.
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Table 9: Decomposition of the long-run R&D benefits: relative importance

Pharmaceutical Equipment Electronics Machinery
no patent 0.670 0.478 0.637 0.538
utility 0.022 0.281 0.207 0.250
invention 0.279 0.031 0.028 0.042
both 0.029 0.210 0.128 0.171

Note: each column adds up to one.

4.5 Value of patents

Now we employ (11) and (12) to calculate the value of patents. In principle, the value

of patents is defined for each firm. Even if this firm does not file patent applications,

our formula gives the shadow value (or expected value) of a patent. To make the results

comparable with the literature, we only estimate the value of invention (utility model)

patents focusing on the observations with positive invention (utility model) patents.

That is, the patent value is reported only when the firm files some patent applications.

The estimation results are displayed in Table 10. We can see that invention patents and

utility model patents play a significant role in increasing the firm value. Take the phar-

maceutical industry as an example, the mean value of a proportional increase in firm

value caused by creating an applicable invention patent is 0.544%, and the associated

average absolute change is 0.283 million USD. In comparison, the average of the pro-

portional increase in the firm value caused by creating a utility model patent is 0.671%,

which is associated with an increase of 0.333 million USD in the firm value. On average,

an invention patent causes a 0.764% increase in the firm value, while a utility model

leads to a 0.661% in the firm value. This indicates that the value of a patent is about

twice as much as the benefits of R&D investment. Also, note that the value of invention

patents is smaller than the utility model in the pharmaceutical industry, while the sit-
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uation is reversed in the other three high-tech industries. Since firms enjoy the largest

gain from R&D investment by generating inventions and utility models simultaneously,

the conditional probability Pr(bt+1 = 1|nt+1 = 1,rdt = 1) is also an important factor in ex-

plaining the patent value of an invention. A lower Pr(bt+1 = 1|nt+1 = 1,rdt = 1) can also

lead to a lower value for invention patent. In the pharmaceutical industry, the condi-

tional probability is only 0.056, being much lower than the other high-tech industries.

As a result, the value of invention patent is estimated to be lower than other high-tech

industries.

Table 10: Estimates of patent value

invention utility
mean median std mean median std

proportional change:
Pharmaceutical 0.544 0.546 0.184 0.671 0.673 0.225
Equipment 0.680 0.713 0.162 0.503 0.528 0.121
Electronics 0.951 0.965 0.308 0.692 0.702 0.226
Machinery 0.784 0.813 0.224 0.595 0.617 0.172
average 0.757 0.661
absolute change:
Pharmaceutical 0.270 0.253 0.122 0.333 0.312 0.149
Equipment 0.282 0.275 0.101 0.209 0.204 0.075
Electronics 0.506 0.461 0.242 0.368 0.335 0.177
Machinery 0.305 0.292 0.126 0.231 0.221 0.096
average 0.374 0.326

Note: value of invention (utility) patents is only reported for observations with invention (utility)
patents; the absolute change is measured in million USD.

The patent value measured by our model captures the proportional changes in the

firm’s value conditioning on that the firm has an investment in R&D in the current pe-

riod. Notice that the estimated patent value is much higher than the benefits of R&D.

This is because the estimated patent value is for the realized patent while the benefits of

R&D is related to the expected value of the patent. In this sense, the production-based
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measure is more closely related to the private value of patents instead of their social

benefits, which are realized through knowledge spillovers across industries and firms.20

5 Counterfactual Analysis

In this section, we analyze the impact of two different R&D subsidy policies that are

currently implemented in China. The first is reducing R&D costs by lowering the firm’s

borrowing interest rate. We view this as a cost reduction proportional to expenditures on

R&D (proportional subsidy). The second policy is a lump-sum transfer to firms planning

to undertake R&D investment (lump-sum subsidy).

These two R&D subsidy policies potentially affect firms’ value and innovation prob-

abilities differently. We investigate both policies’ impact via (1) reducing maintenance

costs and (2) reducing start-up costs. In total, we consider four subsidy programs in

total. We also quantify the per-unit subsidy’s impact and compare its effects with the

above two subsidy policies.

5.1 Setup for counterfactuals

5.1.1 Definition of different R&D subsidies

Proportional subsidy. We first consider a scenario in which the government can perfectly

evaluate the innovation projects to know each firm’s innovation cost Cit . Let (1−δs) and

(1− δm) be the subsidy rate for start-up costs and maintenance costs, separately. Un-

der the scheme of proportional subsidy, the amount for subsidy received by each firm

is simply τTit = (1− δT )Cit , where T ∈ {s,m} denote the type of firms subsidized by the

20Dang and Motohashi (2015) proposes to use the measure of knowledge breath as a proxy for the quality
of patents. In appendix C.4, we show that this method may not be a good indicator of the patent quality. At
least, it does not reflect the private value of patents measured by the increase in the firm’s value.
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proportional subsidy; T = s represents that the subsidy is targeted at the R&D starters

and T = m for R&D continuers. In period t, upon receiving a proportional subsidy, firm

i’s R&D costs become C(τTit) = Cit − τit = δTCit . Then the expected expenditure on pro-

portional subsidies conditional on the firm’s capital stock kit is

E(τTit |kit) = (1−δT )E(Cit |kit) = (1−δT )γit , (20)

where γit = δsκskit for R&D starters and γit = δmκmkit for R&D continuers. We consider

the impact of one-period subsidy. After introducing the proportional subsidy, we can

express the expected firm value as:

W prop
Tit = π(φit)+

∫
∞

0
max

rdt∈{0,1}
{βEV0,βEV1−δTCit}dG(Cit) (21)

where G(Cit) is the cumulative density function for the firm’s innovation cost Cit . Based

on the estimates of EV0 and EV1 from our previous analysis, we can calculate W prop
Tit . Then

the long-run effect of a one-period proportional subsidy is defined as the increase in the

firm value, which can be expressed as:21

LBprop
Tit =W prop

Tit −V (φit ,rdit−1) (22)

= γit

[
δT e−

β∆EVit
δT γit − e−

β∆EVit
γit +(1−δT )

]

Lump-sum subsidy. In reality, the government can hardly observe each firm’s innovation

costs. Noticing this, we consider the case when the government only knows the distribu-

tion of R&D costs, as the econometrician does. Since the government does not know the

realization of Cit , we assume that the innovation subsidy is implemented by targeting the

21See the Lemma in Appendix B.2.
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observable–the expected R&D costs, E(Cit) = γit . In particular, the innovation subsidy is

a lump-sum transfer to the firm with an amount of FTit for type-T firms. We impose that

FTit = E(τTit |kit) so that the expected value of lump-sum transfer received by the firm is

equal to the expected proportional subsidies.22 Under one-period lump-sum subsidy,

the firm’s expected value function becomes:

W lump
Tit = π(φit)+

∫
∞

0
max

rdit∈{0,1}
{βEV0,βEV1 +(1−δT )γit −Cit}dG(Cit) (23)

Similar to the proportional subsidy analyzed just now, the long-run effect of the one-

period lump-sum transfer on firm value is estimated as:

LBlump
Tit =W lump

Tit −V (φit ,rdit−1) (24)

=γit

[
e−

β∆EVit+(1−δT )γit
γit − e−

β∆EVit
γit +(1−δT )

]

Similarly, we can calculate the average probability of innovation after receiving subsidy

as Pprop
Tit and Plump

Tit and compute the innovation-enhancing effect of different subsidy pro-

grams:

Pprop
Tit =

∫
β∆EVit

0
dG(c/δT ) = 1− exp

(
−β∆EVit

δT γit

)
(25)

Plump
Tit =

∫
β∆EVit+(1−δT )γit

0
dG(c) = 1− exp

(
−β∆EVit +(1−δT )γit

γit

)
(26)

Start-costs subsidy and maintenance-costs subsidy. For both of the proportional subsidy

and lump-sum subsidy, the government need to subsidize two types of firms: the R&D

starters (Tit = s) and continuers (Tit = m). Because these two types of firms have different

distributions of innovation costs, the expected government expenditures on subsidizing

22This is because E(FTit) = E(E(τTit |kit)) = E(τTit) by the law of iterated expectations.
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them can still vary even if δs = δm. To be able to compare their effectiveness, we require

that their expected expenditures are the same. For R&D continuers and starters, the

expected subsidies they receive are:

E(τs
it) = (1−δs)κsE(kit |Tit = s) (R&D starters);

E(τm
it ) = (1−δm)κmE(kit |Tit = m) (R&D continuers).

Equalizing E(τs
it) and E(τm

it ) leads to

δs = 1− (1−δm)
κmE(kit |Tit = m)

κsE(kit |Tit = s)
. (27)

For each year, we can estimate E(kit |Tit = m) and E(kit |Tit = s) as the sample average of the

firm’s capital stocks for R&D continuers and starters, separately. Therefore we can use

Equation(27) to determine δs given any chosen δm. This enables us to rule out that the

different impacts generated by the subsidies are simply because that R&D starters and

R&D continuers receive different levels of financial supports from the government.

Table 11: Amount of subsidies for different policies

Subsidy types Proportional subsidy Lump-sum subsidy

R&D starters (1−δs)Cit Cit − (1−δs)γit

R&D continuers (1−δm)Cit Cit − (1−δm)γit

In total, we consider two types of subsidy policies and their effects on two types of

firms (R&D continuers and R&D starters). We summarize these four different regimes of

subsidies in Table 11. In total, we consider two types of subsidy policies (proportional

subsidy and lump-sum subsidy). For each type of subsidy, we consider their effects for

two types of firms (R&D continuers and R&D starters), separately. With the parameter

restriction in Equation 27), the expectation of all four different types of subsidies are
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equal to (1−δm)γit .

5.1.2 Theoretical analysis of different R&D subsidy programs

Proportional versus lump-sum subsidy. Based on the model’s setting, we can charac-

terize the effects of the introduced subsidy programs. We focus on two firm margins

in evaluating the impact of R&D policies: the expected firm value and the innovation

probability. We first compare the outcomes of proportional subsidy with that of the

lump-sum subsidy by fixing the firm type T ∈ {s,m}, then we consider the outcomes

across different types of firms (R&D starters versus R&D continuers) for proportional

subsidy and lump-sum subsidy, respectively. We have the following proposition:

Proposition 1. If the R&D costs follow an exponential distribution, for T ∈ {s,m}:

1. LBlump
it > LBprop

Tit for any δT ∈ (0,1);

2. Each firm has a cut-off value δ̄Tit ≡ β∆EVit/γit such that Plump
Tit < Pprop

Tit if δT < δ̄Tit and

Plump
Tit > Pprop

Tit whenever δT > δ̄Tit .

Proof. See Appendix B.2.

The first result of Proposition 1 shows that conditional on the expected amount of

subsidy, lump-sum subsidy always increases the firm value more than the proportional

subsidy when the R&D costs follow an exponential distribution.23.

The second result of Proposition 1 states that the effect of enhancing innovation

probability depends on the magnitude of the subsidy. Note that β∆EVit/γit measures

the expected net benefits of innovation, and is positively related to the firm’s innovation

23We consider the case of a more generalized distribution and its implication for counterfactual analysis
in Subsection 6.1
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probability in the absence of innovation subsidies (see Equation (18)). According to re-

sult 2 of Proposition 1, the lump-sum subsidy stimulates the innovation more than the

proportional subsidies when the firm’s intrinsic innovation probability is relatively low.

This implies that the lump-sum subsidy is more effective than the proportional subsidy

for the group of firms who are unlikely to participate in innovation prior to receiving any

subsidies.

Figure 3: Shape of the value function
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R&D starters versus continuers. R&D starters and R&D continuers differ not only in

their R&D status in the previous period, but also in their productivity and capital stock.

Conditioning on the type of subsidy policy (proportional or lump-sum), it is hard for us

to reach a general conclusion regarding which firms benefit more from the R&D subsidy.

However, if we condition on the firm’s capital stock and productivity, we can numerically

show the R&D continuers will increase their firm value more upon the same reduction
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in the R&D costs. Figure 3 shows the expected firm value with respect to κ for both R&D

continuers and R&D starters. When κ is low, the expected firm value of R&D starters

increases more than the R&D continuers upon receiving the same decrease in the R&D

costs. But when κ is large, the curve is flattened and the expected firm value is insensi-

tive to a small change in κ . Because the cost parameters we have obtained universally

indicate that κm < κs, we can anticipate that the expected firm value of R&D continuers

will increase more after receiving the R&D subsidy. It is clear that the innovation proba-

bility is a convex function of κ’s, and has a flattened right tail. Similar to our analysis of

the firm value, we anticipate the R&D continuers will respond more actively to the R&D

subsidies regardless of the subsidy type.

5.1.3 Ex-post effects per unit R&D subsidy

In analyzing the policy effects of proportional subsidy and lump-sum subsidy, we equal-

ize the expected payments of the government for different subsidy programs. However,

the “actual” total subsidy can still be different because firms have different incentives to

innovate when facing different R&D subsidy programs. As the consequence, the distinct

effects of different subsidies on the expected firm value and innovation probability may

simply be driven by the differences in their ex-post amount.

To address this concern, we now normalize the change in firm value using the ex-

post amount of R&D subsidy. For different subsidy policies, the change in firm value

caused by one unit subsidy is defined as:

χ
prop
T =

∑i ∑t Pprop
Tit LBprop

Tit

∑i ∑t Pprop
Tit (1−δT )γit

(28)

χ
lump
T =

∑i ∑t Plump
Tit LBlump

Tit

∑i ∑t Plump
Tit (1−δT )γit

(29)
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Equations (28) and (29) deserve some explanation. On the right-hand side of these equa-

tions, the numerator is the summation of the expectation of the increase in firm value,

and the denominator is the expected ex-post subsidies distributed to firms.24 We need

to consider the innovation probability to back out the actual subsidy received by firms,

because only firms that are active in R&D investment are able to receive the R&D sub-

sidy. χ
prop
T and χ

lump
T measure the change in firm value caused by one unit proportional

subsidy or lump-sum subsidy, respectively. It is clear that χ
prop
T > χ

lump
T (or < χ

lump
T ) in-

dicates the proportional subsidy is more (or less) efficient than lump-sum subsidy in

increasing the firm value. Similarly, we can define the average efficiency of one-unit

subsidy in increasing the innovation probability.

5.2 Counterfactual results

We conduct three groups of experiments by choosing δm = 90%, 85%, and 80%. These

experiments display similar results in terms of the rankings of the effectiveness of differ-

ent R&D subsidy policies. For the sake of brevity, we report the results of the experiment

in which δm = 80%.25 The results for this counterfactual analysis are displayed in Table

12.

In terms of increasing the firm value, there are several interesting findings from this

experiment. First, the lump-sum subsidy is much more effective than the proportional

subsidy in enhancing the firm value for all Chinese high-tech industries. Second, the ef-

ficiency of lump-sum subsidy (effects per unit subsidy) also dominates the proportional

subsidy. Third, reductions in maintenance costs increase the firm value more than the

start-up costs. This implies that these policies are more effective for R&D continuers.

24For the proportional subsidy, the expectation of ex-post subsidy is
∫

∞

0 Pr(Cit < β∆EVit/γit)(1 −
δT )CitdG(Cit) = (1−δT )γit ; for the lump-sum subsidy, we have

∫
∞

0 Pr(Cit < β∆EVit/γit)(1−δT )E(Cit)dG(Cit) =
(1−δT )γit

25Other results are available upon request.
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Inspecting the results for increasing the firm’s probability of innovation. We note that

the proportional subsidy is more effective than the lump-sum subsidy in enhancing the

firms’ innovation probability. However, the lump-sum subsidy has a higher ex-post effi-

ciency than the proportional subsidy. For both the lump-sum and proportional subsidy,

subsidizing the R&D continuers is more effective in stimulating firms to participate R&D

investment.

It is worthing noting that our counterfactual results are probably dependent on the

parametric assumption of the distribution of R&D costs. In the next section, we fur-

ther show that most of these results are stable to other distributional assumptions that

are more generalized than the exponential distribution. Another key factor that may af-

fects the counterfactual results are the joint distribution of state variables (φt , rdt−1, kt).

This distribution further determines the cut-off value δ̄Tit for each firm. When the cut-

off value is relatively high, the stimulating effect of proportional subsidy dominates the

lump-sum subsidy. Following the same logic, when comparing the R&D continuers with

the R&D starters, the difference in their distribution of states and their R&D cost param-

eters both play a role in shaping the firm’s response to the same subsidy program.

6 Discussion and Extensions

6.1 Distribution of R&D costs

In our previous analysis, idiosyncratic R&D costs are assumed to be unobserved by the

econometrician and follow an exponential distribution. The exponential distribution

has brought us analytical forms in calculating the expected value function, which further

reduces the computational burden. Our theoretical characterization also hinges on this

distributional assumption. Though this assumption is well accepted in the structural
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analysis of R&D investment (see Aw et al. (2011); Peters et al. (2017), among others), one

may argue that the results, especially the counterfactual analysis, can be sensitive to the

chosen parametric form for the distribution of R&D costs. To relieve this concern, we

now relax this assumption and consider G(c) being a general cumulative distribution

function. Proposition 2 states that the lump-sum subsidy dominates the proportional

subsidy in increasing the firm value for a more general class of distributions.

Proposition 2. If G(c;γit) is continuous and twice differentiable with respect to c, with

g(c;γit) = ∂G(c;γit)/∂γit being the probability density function and C̄it being the expected

value. The proportional and lump-sum subsidy are (1−δT )Cit and (1−δT )C̄it , respectively.

Then for T ∈ {s,m} and δT ∈ {0,1}:

1. There always exists a cut-off value δ̄Tit ≡ β∆EVit/γit for each firm such that Plump
Tit <

Pprop
Tit if δT < δ̄Tit , and Plump

Tit > Pprop
Tit whenever δT > δ̄Tit ;

2. For δT > δ̄Tit , LBlump
Tit is greater than LBprop

Tit ; for δT < δ̄Tit , a sufficient condition for

LBlump
Tit > LBprop

Tit is: (1) ∂g(c;γit)/∂c < 0 and (2) limx→∞ c3g(c;γit) = 0.

Proof. See Appendix B.2.

In the result 2 of Proposition 2, condition (1) requires that the probability mass ac-

cumulates more for low R&D costs, condition (2) restricts that the probability density

function of the R&D costs must have a thin right tail. Both of these conditions point out

that the distribution of R&D costs should be skewed towards low R&D costs. It can be

verified that many distributions in the exponential family satisfy these conditions under

some restrictions. As robustness analysis for our quantitative exercise, we let the R&D

costs follow a Weibull distribution with a shape parameter θ and a scale parameter γit .
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In this case, the cumulative density function of Cit is given by

G(c) = 1− e−
(

c
γit

)θ

. (30)

Here θ is common to all firms and is related to the variance of the R&D costs. We

can verify that limc→∞ c3g(c) = 0 using the L’Hospital’s rule. Note that when θ = 1, the

Weibull distribution degenerates into the exponential distribution. The density func-

tion is g(c) = θcθ−1

γθ
it

e−
(

c
γit

)θ

. When θ ≤ 1, the probability density function is decreasing

in c. According to Proposition (2), the lump-sum subsidy increases the firm value more

than the proportional subsidy. If θ > 1, this density function has a bell shape.26 In this

case, the relative effectiveness of proportional and lump-sum subsidy become less clear.

Hence we re-estimate our model with θ being 0.5, 1.5, and 2 and repeat our counterfac-

tual analyses.27

The estimates for κ’s and the full counterfactual results are presented in Appendix

A. We find that, for the average costs of R&D, the benefits of R&D and its decomposi-

tion into different channels, as well as the value of the patent, the estimation results stay

close to our benchmark results.28 We summarize the counterfactual results in Figure 4.

For different values of θ , we take the difference between the outcome of lump-sum sub-

sidy and proportional subsidy and average them by pooling firms in different industries.

From Panel A, we know that the lump-sum subsidy performs better in increasing the

26Another potential generalization of the Exponential distribution is the Gamma distribution of which

the probability density function is g(c) = xθ−1e−
c

γit

γα
it Γ(α)

for c > 0 and zero otherwise, with θ being the shape pa-

rameter and γit characterizes the mean. When θ = 1, the Gamma distribution turns to be the exponential
distribution. Using Proposition 2, it is easy to show that when θ ≤ 1, the lump-sum subsidy dominates
proportional subsidy in terms of increasing the firm value.

27When the R&D costs have a Weibull distribution, the expected value of R&D costs is given by E(Cit |kit)=

Γ(1+ 1
θ
)γit . We choose the subsidy rate (1− δ̃m) =

1−δm
Γ(1+ 1

θ
)

so that the expectation of the amount of innovation

subsidy is equalized for different projects.
28To save space, we do not provide these results here; they are available upon request.
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Figure 4: Counterfactual results for Weibull- Distributed R&D Costs
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Note: θ is the shape parameter for the Weibull distribution.

firm value as a total. The difference between the lump-sum subsidy and proportional

subsidy diminishes as we improve the value of θ . Panel C shows that the lump-sum

subsidy causes a larger increase in firm value per-unit subsidy than the proportional

subsidy. But their difference shrinks as we increase θ . This pattern also exists for the

R&D starters. As for the change in innovation probability, compared to the benchmark

model, we observe a smaller gap between the proportional and lump-sum subsidy when
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we adjust θ to be 0.5. As we increase the value of θ , this gap becomes wider. When we

look at the relative efficiency of stimulating innovation probability, depending on the

value of θ , there is no clear pattern for which subsidy policy should work better. Over-

all, these results confirm that our benchmark results are not unique to the exponentially

distributed R&D costs and are stable to more generalized distributions of R&D costs.

6.2 Firm ownership

One concern about using Chinese data is the preferential subsidy towards State-Owned

Enterprises (SOEs). The co-existence of SOEs and non-SOEs means that firms may have

different R&D costs simply because of their differences in the ownership. If this is the

case, we should consider the effects of firm ownership on R&D costs in the specification

of R&D costs. Recall that in our benchmark model, we relate the mean value of R&D

costs to the firm size (measured by capital stock) in equation (4). We can easily incorpo-

rate firm ownership in the specification of our model.29 Let oit be the variable indicating

firm ownership: oit equals one for SOEs and zero otherwise. We assume the distribution

of R&D costs is given by:

Cit ∼ exp{rdit−1× (κm +κmooit)kit +(1− rdit−1)× (κs +κsooit)kit}, (31)

where κmo and κso measure the effects of firm ownership on continuing and start-up

R&D costs, respectively. A negative κmo (κso) implies that SOEs have lower maintenance

(start-up) costs than non-SOEs conditional on their capital stocks. The estimation of the

extended model is similar to the benchmark model; the only difference is that we now

have two additional parameters (κmo,κso) to characterize the distribution of R&D costs.

29A similar extension can be found in Peters et al. (2016) which treats financial strength as a determinant
of the firm’s R&D costs.
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Table 13: Estimation results for the extended model with firm ownership

κs κm κso κmo N LLF

Pharmaceutical .904 .111 1.101 .085 8538 -4087.80
(.081) (.003) (2.343 ) (.038)

Equipment 1.776 .107 2.210 .038 930 -335.70
(.086) (.002) (1.546) (.017)

Electronics 2.786 .170 1.358 .143 9248 -315.50
(.121) (.004) (1.327) (.031)

Machinery 1.209 .105 -.063 .033 3565 -1526.90
(.079) (.002) (40.40) (.030)

Note: Standard errors in the parenthesis are obtained by bootstrapping 50 times. The currency
unit for R&D costs is million US dollars.

In Table 13, we present the estimation results for the extended model with firm own-

ership. We note that the estimates for κs and κm are very close to that obtained from

the benchmark model. The estimate for κso is not significant for all of the four indus-

tries. This indicates that SOEs do not differ substantially from non-SOEs when starting

their innovation activities. In the column for κmo, the estimates are significantly positive

except for the industry of machinery, which suggests that SOEs tend to pay more main-

tenance costs conditional on the capital stock. This might be because of the preferential

subsidies that allocated to SOEs have stimulated their R&D investment.

We have also tried to include the ownership variable oit and its interactions with rdit ,

rdit × nit+1, and rdit × bit+1 in the productivity evolution equation, but the estimates of

these variables show no significance. This implies that the endogenous productivity

equation for SOEs is not significantly different from the non-SOEs. The estimation re-

sults for productivity are reported in Appendix A.3. Overall, adding the indicator for

SOEs in the model does not change our results regarding the benefits of R&D, though it

implies higher maintenance costs for SOEs.
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7 Conclusion

Understanding the costs and benefits of R&D investment is crucial for the designing of

innovation policy in spurring R&D investment and enhancing the firm value. It is usually

difficult to measure the innovation outcomes because not all inventions are patentable

and the accumulating tacit knowledge is hard to measure. Our empirical framework

includes both the innovation input (the R&D investment) and imperfect measures for

innovation outcome (patents) in the productivity evolution equation and does not re-

quire that researchers perfect observe the innovation output caused by R&D investment.

Moreover, based on the model, we propose an empirical framework to decompose the

benefits of R&D into the patent and non-patent channels, as well as a novel estimator of

the patent value conditioning on the firm’s R&D choice.

We apply the empirical model to a sample of Chinese high-tech manufacturing firms

between 2001 and 2007. We find that Chinese high-tech firms generate much lower ben-

efits from innovation than estimates of high-tech firms in Germany obtained by PRVF.

More interestingly, we document that most of the benefits of R&D investment originate

from the non-patent channel. We show that the lump-sum transfer performs better than

the proportional subsidy in increasing the firm value both empirically and theoretically

for a large class of distributions.

In the current empirical framework, we treat the R&D-patent relation to be exoge-

nous and do not model the firm’s patenting choice. We also do not consider the quality

differences in patents produced by different firms in the sense that each patent causes

the same percentage change in the firm’s productivity. Richer models incorporating en-

dogenous patenting choice and patent quality differences will be an important avenue

for future research.
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Appendices

A Data and Supplementary Estimation Results

A.1 Characteristics of R&D Starters and Continuers

In the table below, we display several firm characteristics for R&D starters and contin-

uers, respectively.

Table A.1: Firm characteristics: Starters vs. Continuers

variables log(capital) log(employees) age

R&D starters 8.38 4.75 16.16
R&D continuers 8.77 4.93 18.10

Total 8.50 4.80 16.76

A.2 Data features of R&D-Patents Relation

In this appendix, We present more features of the data for Chinese high-tech manufac-

turing firms. In particular, We will discuss the distributional characteristics for patents

and the R&D-patents relation. These discussions suggest that the extensive margins of

R&D and patents captures most part of the innovation activities.

Distribution of patents. Table A.2 reports the distribution of patents. We can see that

the distribution of patents is highly concentrated at zero for all three types of patents.

The share of firm observations with zero invention (utility) patents in the final sample is

98.01% (95.72%). This implies that only a small fraction of firms file patent applications.

Focusing on the positive part of the distribution, the percentage of firm observations

filing only an (a) invention-(utility-)patent is 1.22% (2.22%), and that of firm observa-

tions filing two invention (utility) patents is 0.39% (0.96%). Moreover, the number of
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firm observations submitting no less than three invention- (utility-) patents account for

0.37% (1.10%) in the sample. Overall, these observations imply that the variation in the

outcome of the patent in positive part (extensive margin) is much less significant than

the change from zero to one (i.e. the extensive margin) for invention and utility patents.

In other words, among firms that have positive patent applications, most of the firms

(over 50%) have only one patent. Overall, these results suggest that we have to rely on

the variation in the extensive margin to identify the productivity effects of the patents.

Table A.2: Distribution of patents for high-tech manufacturing firms

Patents counts 0 ≥ 1 1 2 ≥ 3
Invention 98.01% 1.99% 1.22% 0.39% 0.37%
Utility 95.72% 4.28% 2.22% 0.96% 1.10%

Note:the percentage represents the share of observations in the specified cohort.

R&D-patents relation. The R&D-patents linkage is an important part in the structural

model to be explained in the next section. Since we do not have a direct measure for in-

novation, we rely on the patents to measure the outcome of innovation. Different from

the indicators of process and product innovation used in PRVF, we observe the number

of invention patents and/or utility patents filed by each firm. To check the validity of us-

ing patents as indicators for innovation, we report the correlation between patents and

R&D at both intensive and extensive margins in Table A.3. We estimate a linear model

relating patents applications to R&D investment controlling for industry, and year fixed

effects. We also control for firm size by use R&D intensity defined as the ratio of R&D

expenditures to the firm’s sales.

The matrix of regression coefficients in Table A.3 show that only the correlation be-

tween the extensive margin of invention patents and R&D investment is positive and

highly significant. This implies that the variation in patents outcome at the intensive

margin is not well explained by the firm’s R&D effort. Because R&D is the fundamen-
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Table A.3: Correlation between different margins of R&D and patents

Invention patents Utility patents
(1) (2) (3) (4) (5) (6)

margins extensive intensive both extensive intensive both

extensive
.0402*** -.216 .0732*** .0444*** .165 .121***
(.003) (.284) (.009) (.003) (.374) (.025)

intensive
0.690*** 3.214 1.631*** .403*** 3.319 1.350**
(.120) (2.196) (.364) (.109) (3.060) (.442)

both
.883*** 1.015 1.883*** .780*** 2.870 2.302***
(.110) (2.497) (.327) (.107) (3.109) (.476)

Note: all regression contain industry and year fixed effects. Results in columns (1) and (3) are
obtained using all the sample; columns (2) and (4) display the results using observations with
positive patent applications. Standard errors are in parentheses. * p < 0.05, ** p < 0.01, *** p <
0.001

tal source of innovation, we will expect that the variation in patents along the intensive

margin will not have a significant impact on the firm’s growth. Another important ob-

servation from the table is that the intensive margin of R&D is an important explanatory

variable for the extensive margin of patents outcome. However, the correlation coeffi-

cient becomes much larger if we consider both margins of R&D and use R&D intensity

as the indicator for R&D. This suggests that the change of R&D from zero to positive has

a much larger marginal impact in generating patents. In the data, the fraction of firms

with zero patent is around 30%, while the fraction is increased to be 60% for firms with

at least one invention or utility patent. In contrast, the mean value of R&D for firms with

at least one patent is only slightly higher than firms without any patent. This confirms

that the variation in R&D along the extensive margin is the main driver in explaining the

outcome of the patent.
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A.3 NLLS estimation

A.3.1 Quadratic h(·)

As a robustness check, we also try to parameterize h(·) as a quadratic function. The

estimation results are reported in Table A.4. In order to use the first-stage estimates

to calculate the value function, we need to check the first-order derivative of h(·) with

respect to φit . To ensure that firms have some incentives to invest in R&D and their

value functions are bounded, we require this derivative is between 0 and 1. In figure A.1,

we show the empirical ∂h(·)/∂φt against productivity for different forms of h. It is clear

that the quadratic form would provide a poor prediction of R&D investment in the data

because the non-stationary productivity process will discourage firms from undertaking

R&D investment in the infinite-horizon model.

Table A.4: Estimated productivity evolution equation with quadratic form

productivity evolution equation

φt 0.826∗∗ (17.13)
φ 2

t 0.300∗∗ (15.87)
rdt 0.00505∗∗ (3.35)
rdt ×nt+1 0.0153∗∗ (3.04)
rdt ×bt+1 0.0142∗ (2.85)
βk -0.308∗∗ (-25.71)

N 22492

Note:T statistics are in parentheses; * p<0.05, ** p<0.01.

A.3.2 Productivity evolution equation with firm ownership

To account for the ownership effects in the productivity evolution, we extend the bench-

mark productivity process to be as follows:
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Figure A.1: First-order derivative of h(·) with respect to φit
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Note: In the cubic form, the number of observations that has a slope below zero is 89;
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517.

φt+1 = ρ1φt +ρ2φ
2
t +ρ3φ

3
t +ρ4rdt +ρ5rdt ×nt +ρ6rdt ×bt (A.1)

+ρ7rdt ×ot +ρ8rdt ×nt ×ot +ρ9rdt ×bt ×ot +ρ10ot + εit+1

Under this setting, the marginal effect of R&D on future productivity is given by:

∆φt+1

∆rdt
= ρ4 +ρ5nt +ρ6bt +ρ7ot +ρ8nt ×ot +ρ9bt ×ot (A.2)

Therefore the firm ownership plays a role in affecting the productivity effects of R&D

and patents. The difference in the R&D’s productivity effects between SOEs and non-

SOEs is given by ρ7 + ρ8nt + ρ9bt . Negative values for ρ8 and ρ9 indicate that the R&D

investment of SOEs is less effective in stimulating future productivity. Moreover, ot con-

trols the difference in productivity levels between SOEs and non-SOEs. The estimation
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results are displayed in Table A.5. In columns (1) to (3), the estimates for ρ1 to ρ6 are

very similar. In Column (3) in which we control the difference in productivity levels, the

estimation results of ρ7 to ρ9 show no significant difference in the productivity effects

for SOEs and non-SOEs.

Table A.5: Estimated productivity evolution with firm ownership

(1) (2) (3)

ρ1(φt) 0.823** 0.823** 0.824**
(0.06) (0.06) (0.06)

ρ2(φ
2
t ) 0.508** 0.508** 0.508**

(0.19) (0.19) (0.19)
ρ3(φ

3
t ) -1.133** -1.150** -1.150**

(0.08) (0.08) (0.08)
ρ4(rdt) 0.00436** 0.00378* 0.00373*

(0.00) (0.00) (0.00)
ρ5(rdt ×nt) 0.0145** 0.0144** 0.0155**

(0.01) (0.01) (0.01)
ρ6(rdt ×bt) 0.0137** 0.0140** 0.0139**

(0.00) (0.00) (0.01)
ρ7(rdt ×ot) 0.0217 0.0240

(0.02) (0.02)
ρ8(rdt ×nt ×ot) -0.0709** -0.0511

(0.01) (0.08)
ρ9(rdt ×bt ×ot) 0.00710

(0.08)
ρ10(ot) -0.0708**

(0.01)

N 22492 22492 22492

Note: * p<0.05 ** p<0.01
Standard errors in parentheses
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Table A.6: Cost parameters for the case of the Weibull Distribution

Pharm Equip. Elect. Mach.
κs 5.560 23.040 3.863 0.962

θ = 0.5 κm 0.074 0.066 0.011 0.007
LLF -3969.4 -332.6 -3011.5 -1508.7
κs 0.368 0.612 0.086 0.043

θ = 1.5 κm 0.090 0.094 0.013 0.009
LLF -4487.9 -352.4 -3446.1 -1658.5
κs 0.254 0.395 0.049 0.028

θ = 2 κm 0.100 0.091 0.014 0.010
LLF -4843.0 -390.1 -3790.3 -1824.6

A.4 The Weibull Distribution for R&D Costs

A.4.1 Cost parameters

For the identification reason, we set the shape parameter θ externally, and estimate the

model using the Nested Fixed Point algorithm. The estimation results are displayed in

Table A.6.

A.4.2 Counterfactual results

For externally chosen θ , the subsidy rate is determined by:

1− δ̃m =
1−δm

Γ(1+ 1
θ
)

(A.3)

Based on this normalization, we choose δs using Equation 27; full results are displayed

in Table A.7.
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B Proofs

B.1 Profit maximization and revenue equation

The firm’s profits maximization problem is

max
Lit ,Mit

{PitQit −PLtLit −PMtMit}

s.t.Qit = P−σ

it Pσ
t Qt

Qit = ΦitK
βk
it Lβl

it Mβm
it exp(βaait)

Write the revenue as a function of the output, the first-order conditions are:

(
1− 1

σ

)
(Pσ

t Qt)
1
σ Q
− 1

σ

it
∂Qit

∂Lit
= PLt (A.4)(

1− 1
σ

)
(Pσ

t Qt)
1
σ Q
− 1

σ

it
∂Qit

∂Mit
= PMt (A.5)

where ∂Qit
∂Mit

= βm
Qit
Mit

and ∂Qit
∂Lit

= βl
Qit
Lit

. This implies that

Mit =
PLt

PMt

βm

βl
Lit (A.6)

Plugging this back to the foc for Lit , we obtain

PLt = βl

(
1− 1

σ

)
(Pσ

t Qt)
1
σ

Q
1− 1

σ

it
Lit

= βl

(
1− 1

σ

)
(Pσ

t Qt)
1
σ

(
PLt

PMt

βm

βl

) βm(σ−1)
σ (

ΦitK
βk
it eβaait

)1− 1
σ

L
(βl+βm)(σ−1)

σ
−1

it

⇒ Lit =

 PLt

(
PLt
PMt

βm
βl

) βm(1−σ)
σ

βl
(
1− 1

σ

)
(Pσ

t Qt)
1
σ

(
ΦitK

βk
it exp(βaait)

) 1−σ

σ


σ

(βl+βm)(σ−1)−σ

(A.7)
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Also note that the foc for Lit also implies that the revenue can be expressed as

Rit =
σPLtLit

βl (σ −1)
(A.8)

When βl +βm = 1, combining these two expressions and take logs yields:

rit = µ0 +µt +(σ −1)(βkkit +βaait +φit) (A.9)

where

µ0 = (σ −1) ln
(

σ −1
σ

β
βl
l β

βm
m

)
(A.10)

µt = (1−σ) ln
(

Pβl
Lt Pβm

Mt

)
+ ln(Pσ

t Qt) (A.11)

B.2 Effects of Various R&D Subsidies

B.2.1 Proof of Proposition 1

We first show that the following lemma to simplify the algebra.

Lemma. Define that ∆it ≡ EV1(φit ,rdit−1)−EV0(φit ,rdit−1)The expected firm value under

different subsidy programs can be expressed as:

W prop
Tit = π(φit)+βEV0(φit ,rdit−1)+

∫
∆it

0
G(

c
δT

)dc (A.12)

W lump
Tit = π(φit)+βEV0(φit ,rdit−1)+

∫
β∆it+(1−δT )γit

0
G(c)dc (A.13)

Proof. Since the proof for obtaining W prop
T is similar to that for W lump

T , here we only show
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the proof for W prop
T as below:

W prop
Tit = π(φit)+

∫
∞

0
max{βEV0(φit ,rdit−1),βEV1(φit ,rdit−1)−δT c}dG(c)

= π(φit)+
∫

∞

0
max{βEV0(φit ,rdit−1),βEV1(φit ,rdit−1)− c}dG(c/δT )

= π(φit)+
∫

β∆it

0
(βEV1− c)dG(c/δT )+

∫
∞

β∆it

βEV0dG(c/δT )

= π(φit)+βEV1G(β∆it/δT )−
∫

β∆it

0
cdG(c/δT )+βEV0(1−G(β∆it/δT ))

= π(φit)+β∆itG(β∆it/δT )+βEV0− cG(c/δT )

∣∣∣∣β∆it

c=0
+
∫

β∆it

0
G(c/δT )dc

= π(φit)+βEV0(φit ,rdit−1)+
∫

β∆it

0
G(c/δT )dc

From now on, we omit the state variables in the value function and the subscripts it

as long as no confusion arises. We prove Proposition 1 as follows:

Proof. 1. Using this Lemma, the difference between W lump
T and W prop

T is:

∆W (δT ) =W lump
T −W prop

T

=
∫

β∆+(1−δT )γ

0
G(c)dc−

∫
β∆

0
G(c/δT )dc

Because G(c) = 1− exp(c/γ), ∆W (δT ) can be expressed as:

∆W (δT ) =
∫

β∆+(1−δT )γ

0

[
1− exp

(
− c

γ

)]
dc−

∫
β∆

0

[
1− exp

(
− c

δT γ

)]
dc

= γ

[
exp
(
−β∆+(1−δT )γ

γ

)
−δT exp

(
− β∆

δT γ

)]
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This implies that

∆W (δT )> 0⇔ exp
(
−β∆+(1−δT )γ

γ

)
−δT exp

(
− β∆

δT γ

)
> 0

⇔ exp
(

β∆

γ

(
1

δT
−1
)
+δT −1

)
> δT

Consider function h(δT ) = exp(δT − 1)− δT , then h(δT )
′ = exp(δT − 1)− 1 ≤ 0 when

δT ∈ (0,1]. h(δT ) attains its minimum value at δT = 1, h(δT )min = h(1) = 0 for δT ∈

(0,1]. This shows that exp(δT −1)> δT for δT ∈ (0,1). Combining that e(
β∆

γ
(1/δT−1)) >

1, we have exp
(

β∆

γ

(
1

δT
−1
)
+δT −1

)
> δT .

2. Take the difference between Plump
Tit and Pprop

Tit , we obtain that

Plump
Tit −Pprop

Tit = exp
(
−β∆EVit

δT γit

)
− exp

(
−β∆EVit +(1−δT )γit

γit

)
= exp

(
−β∆EVit

δT γit

){
1− exp

(
β∆EVit

γ

1−δT

δT
− (1−δT )

)}
.

Hence the condition that Plump
Tit −Pprop

Tit > 0 is equivalent to exp
[

β∆EVit
γ

1−δT
δT
− (1−δT )

]
<

1, which implies δT > β∆EVit/γit .

B.2.2 Proof of Proposition 2

The proof of result 1 in Proposition 2 is very similar to what we have shown in the proof

of the same result in Proposition 1; we only show the proof for result 2 as below.

Proof. The difference of expected firm value between the lump-sum subsidy and pro-
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portional subsidy is

∆W (δT ) =
∫

β∆+(1−δT )C̄

0
G(c)dc−

∫
β∆

0
G(c/δT )dc

(1) δT > β∆/C̄: By change of variable c1 = c/∆T for the second term of ∆W (δT ), we

have

∆W (∆T ) =
∫

β∆+(1−δT )C̄

0
G(c)dc−δT

∫
β∆/δT

0
G(c)dc

>
∫

β∆+(1−δT )β∆/δT

0
G(c)dc−δT

∫
β∆/δT

0
G(c)dc

= (1−δT )
∫

β∆/δT

0
G(c)dc > 0

(2) δT < β∆/C̄: Taking the derivative with respect to δT yields

∆W (δT )
′ =−C̄G

(
β∆+(1−δT )C̄

)
+
∫

β∆

0

c
δ 2

T
g(c/δT )dc

=−C̄G
(
β∆+(1−δT )C̄

)
+
∫ β∆

δT

0
cg(c)dc,

where the second equation is by the change of variable. Note that

lim
δT→0

∆W (δT )
′ =−C̄G(β∆+C̄)+

∫
∞

0
cg(c)dc = C̄(1−G(β∆+C̄))> .

Moreover, observe that the second-order derivative

∆W (δT )
′′ = C̄2g(β∆+(1−δT )C̄)− (β∆)2

δ 3
T

g(
β∆

δT
)

is an increasing function of δT whenever g′(c)< 0. This implies that ∆W (δT )
′′ > ∆W (δT =

ε)′′ for 0 < ε < δT . And that
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lim
ε→0+

∆W (ε)′′ = C̄2g(β∆+C̄)− (β∆)−1 lim
c→∞
{c3g(c)}= C̄2g(β∆+C̄)> 0

Because ∆W (δT )
′′ is right-continuous at 0, we have ∆W (δT )

′′ > limε→0+ ∆W (ε)′′ > 0. This

further implies that ∆W (δT )
′ > 0 and ∆W (δT )> limδT→0+∆W (δT ). Note that

lim
δT→0+

∆W (δT ) =
∫

β∆+C̄

0
G(c)dc− lim

δT→0+

∫
β∆

0
G(c/δT )dc

=
∫

β∆+C̄

0
G(c)dc−β∆

Consider function h(x) =
∫ x+C̄

0 G(c)dc− x, and its first-order derivative h(x)′ = G(x+C̄)−

1≤ 0, hence h(x) is weakly decreasing in x. This indicates that

∆W (δT )> lim
∆→∞

{∫
β∆+C̄

0
G(c)dc−β∆

}
= lim

∆→∞

{
(β∆+C̄)G(β∆+C̄)−

∫
β∆+C̄

0
cg(c)dc−β∆

}
= lim

∆→∞

{
−β∆

[
1−G(β∆+C̄)

]
+C̄G(β∆+C̄)−

∫
β∆+C̄

0
cg(c)dc

}
= lim

∆→∞

{
−β∆

[
1−G(β∆+C̄)

]}
Let x = β∆. Applying the L’Hospital’s rule to evaluate the limit, we obtain that

lim
x→∞

{
x
[
1−G(x+C̄)

]}
= lim

x→∞

{
x2g(x+C̄)

}
= lim

x→∞

{
x2

(x+C̄)3 (x+C̄)3g(x+C̄)

}
= lim

x→∞

{
(x+C̄)3g(x+C̄)

}
= 0

Therefore ∆W (δT )> 0 when limx→∞

{
t3g(t)

}
> 0.
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Online Appendix (Not for Publication)

A The Model Extension with Continuous R&D Investment

In this subsection, we first briefly lay out an extended dynamic model with R&D invest-

ment and patents. The basic structure of the model is similar to that considered in Aw

et al. (2011); Doraszelski and Jaumandreu (2013); Peters et al. (2016, 2017), with the ex-

ception that both R&D and patents play a role in shifting the future productivity.

Production and Profits A firm has a Cobb-Douglas production function

Qit = ΦitK
βk
it Lβl

it Mβm
it exp(βaait) (A.14)

where Qit is the physical output of firm i in period t, Φit is the total factor productivity,

Kit is the capital, Lit is the labor, Mit is the material, ait is the firm’s age. Consider a well-

behaved inverse demand equation

pit = D(Qit) (A.15)

where pit is the output price. To simplify the analysis, we assume that a firm treats capital

and productivity as predetermined when choosing labor and materials in each period.

Let Π(φit ,Sit) be the optimal profits, and R(φit ,Sit) be the revenue, where φit = ln(Φit),

Sit = (Kit ,PLit ,PMit ,ait) is a vector of exogenous state variables. The cost minimization

implies that

Π(φit ,Sit) = (1− βl +βm

θit
)R(φit ,Sit) (A.16)
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where θit is the markup. Note that when βl +βm = 1, the production function is of con-

stant return to scale in terms of Lit and Mit .

Productivity evolution The firm’s productivity φit is unobserved by the econometri-

cian. R&D investment and patenting enter the Markov process governing the produc-

tivity evolution. In particular, the dynamics of productivity is given by

φit+1 = h(φit ,dit ,oit+1)+ εit+1 (A.17)

where dit represents the R&D investment and oit+1 is a vector summarizing the innova-

tion outcome next period, and εit+1 is an iid shock with a mean-zero normal distribution.

Considering different types of innovation output, oit can be a vector of process innova-

tion and product innovation measured by the patents or other observed indicators. The

marginal effects of R&D investment and innovation output are captured by three partial

derivatives ∂h/∂dit , ∂h/∂oit+1, and a cross derivative ∂ 2h/∂dit∂oit+1. Because R&D is the

fundamental source of productivity change, we impose that ∂h(φit ,0,oit+1)/∂oit+1 = 0.

This implies that without R&D investment, we should expect no endogenous produc-

tivity growth, though we can see productivity growth through the channel of exogenous

shocks. The cross-derivative ∂ 2h/∂dit∂oit+1 deserves some discussion. When positive, it

means that the stimulating impact of R&D on productivity is strengthened through the

patenting. This indicates that the patenting system help firms protect their inventions.

When negative, we anticipate that the effect of knowledge spillovers dominates so the

firm’s productivity improves less by patenting. This may be due to the weak patenting

system.

Following CDM, we assume that patents are random variables of which the distribu-

tion is determined by R&D investment. This assumption greatly simplifies the analysis
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by only considering the R&D investment choice. Specifically, patents outcome in next

period is assumed to be a distribution depending on past R&D. The distribution of oit+1

is given by Pr(oit ≤ o) = G(o;dit).30 This layer of uncertainty is similar to that considered

in PRVF. Note the Markovian property implies that the conditional expectation of future

productivity is

E(φit+1|φit ,dit) =
∫

h(φit ,dit ,o)dG(o;dit)

Therefore R&D investment can influence future productivity through affecting h(φit ,dit ,o)

and the distribution of innovation output G(o;dit). This allows me to decompose the im-

pact of R&D into patenting and non-patenting channels.

Recursive formulation To consider a general setting, denote C(dit ,Xit) as the variable

costs of R&D investment. Here Xit = (Sit ,Zit), Zit is the additional exogenous states that

influence the costs of R&D investment.31 In addition, there is a fixed cost of R&D invest-

ment, denoted as f (Xit). With these fixed costs, the model can capture the innovation

choice at an extensive margin. Note that we allow the exogenous state variables to affect

the costs of R&D. Omitting the subscripts, the firm’s dynamic programming problem can

be written in a recursive formulation:

V (φ ,X) = max
d

{
V 0(φ ,X),V d(φ ,X)

}
(A.18)

30In the reduced-form analysis, this process is usually estimated using count data models. See Hall and
Hayashi (1989); Hall et al. (2010).

31For example, Zit may contain past R&D investment decisions so the R&D costs also include adjustment
costs.
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where the value functions for different choices of d are

V 0(φ) = Π(φ ,X)+βE
[
V (φ ′,X′)|d = 0

]
, (A.19)

V d(φ) = max
d

{
Π(φ ,X)−C(d,X)− f (X)+βE

[
V (φ ′,X′)|d

]}
, (A.20)

where β is the discounting factor. We assume that firms have perfect foresight for the

exogenous state variables. This allows us to calculate the expected firm value as

E
[
V (φ ′,X′)|d

]
=
∫ ∫

V (h(φ ,d,o)+ ε
′,X′)dG(o;d)dF(ε ′) (A.21)

where F(·) is the distribution of ε ′. A stochastic equilibrium of the model is a decision

rule d(φ ,X)≥ 0 such that the recursive problem (A.18) is solved.

B Model fit

B.1 Predicted revenues

In Figure A.2, we present a scatter plot to check the relationship between the model pre-

dicted revenue and the revenue information in the data. We can see that the predicted

revenues concentrates around the 45-degree line, which indicates the revenue equation

fits the data well.

B.2 Pooled probability of investing in R&D

Given current state, we can solve for the probability of undertaking R&D,Pr(d = 1|φ ,d−1,S)

using equation (18). Therefore the aggregate hazad function for R&D choice can be cal-
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Figure A.2: Model fit for the revenue data

Note: sales are in logs of revenues in 100,000 USD.

culated as:

H =
1

NT

N

∑
i

T

∑
t

Pr(dit = 1|φit ,dit−1,Sit) (A.22)

On the other hand, in the data the probability of investing in R&D is given as

H̃ =
1

NT

N

∑
i

T

∑
t

dit (A.23)

We calculate this Hazard function for each sector. The results are displayed in Table A.8.

Overall, the estimated model predicts the probability of innovation similar to that ex-

hibited in the data. The model-predicted pooled probability of choosing R&D is slightly

higher, but the difference from the data is around 0.04. Implying that the estimated

model captures the decision of innovating reasonably well in terms of the probability of

choosing innovation for the pooled sample.
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Table A.8: Pooled probability of investing in R&D

Prob. of innovation Pharmaceutical Equipment Electronics Machinery
model 0.300 0.256 0.169 0.296
data 0.379 0.349 0.222 0.389

B.2.1 Transition dynamics of R&D choice

The transition probability characterizes the dynamics of transition for past R&D choice

to current R&D decision. Let rd−1 ∈ {0,1} be the R&D status in previous year and rd ∈

{0,1} be the current R&D decision, then the transition probabilities are Q(rd|rd−1). We

calculate these probabilities in data using a formula as follows:

Q̃(rd = d′|rd−1 = d) =
∑

N
i ∑

T
t I{rdit = d′,rdit−1 = d}
∑

N
i ∑

T
t I{rdit−1 = d}

(A.24)

where d,d′ ∈ {0,1}. The model predicts the transition probability for each given state as:

Q(rd = d′|rd−1 = d) =
1

NT

N

∑
i

T

∑
t

Pr(rdit = d′|rdit−1 = d,kit) (A.25)

where Pr(rdit = d′|rdit−1 = d,kit) can be obtained using Equation (18). We calculate these

two transition probabilities for each sector and present it in Table A.9. First, the general

patterns of the relative magnitudes of transition probabilities in the data and that pre-

dicted by the model are quite similar. In all four industries, the probability of staying in

the previous state is much higher than transiting to a new state. In other words, Q(0,0) is

larger than Q(0,1), and Q(1,1) is greater than Q(1,0). Second, the probabilities predicted

by the estimated model are very close to that observed in the data. These results suggest

that the estimated model captures the transition dynamics in the R&D activities well.
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Table A.9: Transition dynamics of R&D choice

sectors source Q(0,0) Q(0,1) Q(1,0) Q(1,1)
Pharmaceutical data 0.851 0.149 0.233 0.767

model 0.890 0.110 0.379 0.621
Equipment data 0.915 0.085 0.183 0.817

model 0.946 0.054 0.387 0.614
Electronics data 0.930 0.070 0.257 0.743

model 0.950 0.050 0.426 0.574
Machinery data 0.878 0.122 0.200 0.800

model 0.916 0.084 0.375 0.625

Note: Q(d′,d) = Pr(rd = d′|rd−1 = d)

C Computation

C.1 Discretizing non-linear Markov process

The productivity process in the model is non-linear and deserves special treatment. To

improve the accuracy of the approximation, we refer to Farmer and Toda (2017) to dis-

cretize the non-linear Markov process for productivity by matching low order moments

of the conditional distribution using maximum entropy.

C.2 Nested fixed-point algorithm

Profit function We normalize the productivity with the constant ψ0 in the empirical

model. From the estimation equation, we can write the profit as:

r̂it
(
φ̂it
)
= ψ̂0 + ψ̂t +

(
1+ θ̂ j

)
ρ̂0 +

(
1+ θ̂ j

)
β̂kkit +

(
1+ θ̂ j

)
β̂aait −

(
1+ θ̂ j

)
φ̂it (A.26)
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After the normalization, it follows that the firm’s profits can be calculated as

πit
(
φ̂it
)
=− 1

θ̂ j
exp
(
r̂it
(
φ̂it
))

(A.27)

Choose the grid points We compute by industry. Some coefficients are specific to each

industry: ψ0, ρ0, and θ j. Note that we discretize the productivity into 200 grid points, and

age into 4 groups. To implement the estimation, we use the trapezoid method to dis-

cretize the capital space in evenly distributed 100 points. Therefore, we are encountered

with 100×4×4 = 1600 types of firms. For each type of firm, we solve the value function

for 100× 2 = 200 states. In the end, we solve 1600× 200 = 320,000 value functions. We

compute the value function by industry.

For the extended model with firm ownership, we add two points to specify the type

of ownership. This requires us to solve 1600× 200× 2 = 640,000 value functions. The

value function is also computed for each industry.

C.3 Inner and outer loops

Inner loop: Value function iteration Given (φit , kit , ait) ,we use Vd to denote V (φit ,rdit−1 = d; kit ,ait).

We also define γd
it ≡ γ (rdit−1 = d,kit ; κm,κs), for d ∈ {0,1}, and κ ≡ (κm,κs) be the parame-

ter to be estimated. Under this definition, we have γ0
it = κskit and γ1

it = κmkit .32 Employing

32We only illustrate the benchmark case here. for the extended model with firm ownership, we only need
to add parameters κmo and κso into the vector of parameters such that γd

it = γ(rdit−1 = d,kit ;κm,κs,κmo,κso)
and κ ≡ (κm,κs,κmo,κso). There we have γ0

it = κmkit +κmooit and γ1
it = κskit +κsooit . The computation algorithm

for the benchmark model still applies.
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the exponential distribution, we can express the value function as

Vd = πit (φit)+β

∫
∆EV

0
(EV1− c)dG(c)+β

∫
∞

∆EV
EV 0dG(c)

= πit (φit)+βEV1

(
1− e

− ∆EV
γd
it

)
+β

(
∆EV + γ

d
it

)
e
− ∆EV

γd
it

−βγ
d
it +βEV 0e

− ∆EV
γd
it

where ∆EV = EV1−EV0. Therefore the expression of Vd can be simplified as

Vd = πit (φit)+βγ
d
it

(
exp
(
−∆EV

γd
it

)
−1
)
+βEV1, for d ∈ {0, 1} (A.28)

In computing the value functions, Vd is a 200 by 1 vector given capital, age, and indus-

try. Let pmn = Pr(nt+1 = m,bt+1 = n|rdt = 1), for m, n ∈ {0,1}, and further denote Pmn as the

corresponding transition matrix of the productivity and P0 as the transition matrix of

productivity when rdt = 0. then Equation (A.28) can be transformed as

V1 = π (φ)−βγ
1
(

1− exp
(
−∆EV

γ1

))
+β

(
∑
m

∑
n

pmnPmn

)
V1 (A.29)

V0 = π (φ)−βγ
0
(

1− exp
(
−∆EV

γ0

))
+β

(
∑
m

∑
n

pmnPmn

)
V1 (A.30)

Denote P1 = (∑m ∑n pmnPmn), then

V1 = (I−βP1)
−1
[

π (φ)−βγ
1
(

1− exp
(
−∆EV

γ1

))]

76



because ∆EV = P1V1−P0V0, it follows that:

∆EV = (I−βP0)P1 (I−βP1)
−1
[

π (φ)−βγ
1
(

1− exp
(
−∆EV

γ1

))]
(A.31)

−P0

[
π (φ)−βγ

0
(

1− exp
(
−∆EV

γ0

))]

We use equation (A.31) to solve for ∆EV and then we use equations (A.29) and (A.30) to

solve for V1 and V0. Use Tκ as the linear operator applied to ∆EV , it is easy to show that

Tκ is a contraction mapping. Then ∆EV is a fixed point such that

Tκ (∆EV ) = ∆EV.

Now we are in the position to use Newton-Kantorovich iterations. First note that the

Frechét derivative of Tκ with respect to ∆EV is:

T ′κ =
∂Tκ (∆EV )

∂∆EV
(A.32)

= β (βP0− I)P1 (I−βP1)
−1 exp

[
diag

{
−∆EVi

γ1

}]
+βP0 exp

[
diag

{
−∆EVi

γ0

}]

where

diag
{
−∆EVi

γd

}
=



−∆EV1
γd 0 · · · 0

0 −∆EV2
γd · · · 0

...
...

. . .
...

0 0 · · · −∆EVn
γd
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Using the invertibility of [I−T ′κ ] the nth iteration in the Newton-Kantorovich algorithm

is

∆EVn+1 = ∆EVn−
[
I−T ′κ

]−1
(I−Tκ)(∆EVn)

We set the tolerance as e−6; the iteration stops when ‖∆EVn+1−∆EVn‖ ≤ e−6.

Outer loop: BHHH optimization algorithm The outer loop solves the following prob-

lem:

max
κs,κm

∑
i

∑
t

lit (κ, ∆EVit)

where

lit (κ, ∆EVit) = log{rdit Pr(rdit = 1|κ,rdit−1)+(1− rdit)Pr(rdit = 0|κ,rdit−1)} (A.33)

= log{(2rdit −1)Pr(rdit = 1|κ,rdit−1)+1− rdit}

where ∆EVit = ∆EV (φit) and33

Pr(rdit = 0|κ,rdit−1) = 1−Pr(rdit = 1|κ,rdit−1) (A.34)

= exp
{

−β∆EV (φit)

κmrdit−1kit +κs (1− rdit−1)kit

}
.

The basic parameter iteration under the BHHH algorithm is:

κ
n+1 = κ

n +λ

[
∑
i,t

(
∂ lit (κn, ∆EVit)

∂κn

)(
∂ lit (κn, ∆EVit)

∂ (κn)′

)]−1(
∑
i,t

∂ lit (κn, ∆)

∂κn

)
︸ ︷︷ ︸

≡D(κn)

33In the extended model with firm ownership, this equation becomes

Pr(rdit = 0|κ,rdit−1) = exp
{

−β∆EV (φit)

κmrdit−1kit +κs (1− rdit−1)kit +κso (1− rdit−1)oit +κmordit−1oit

}
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From (A.33) we know that

∂ lit (κn, ∆EVit)

∂ (κn)′
= wit

[
∂Pr (rdit = 1|κ,rdit−1)

∂κn
s

,
∂Pr (rdit = 1|κ,rdit−1)

∂κn
m

]
(A.35)

where

wit =
(2rdit −1)

(2rdit −1)Pr(rdit = 1|κ,rdit−1)+1− rdit

∂Pr (rdit = 1|κ,rdit−1)

∂κn
s

= β

∂∆EVit
∂κn

s
γ

rdit−1
it − (1− rdit−1)kit∆EVit(
γ

rdit−1
it

)2
exp
(

β∆EVit

γ
rdit−1
it

)
∂Pr (rdit = 1|κ,rdit−1)

∂κn
m

= β

∂∆EVit
∂κm

n
γ

rdit−1
it − rdit−1kit∆EVit(

γ
rdit−1
it

)2
exp
(

β∆EVit

γ
rdit−1
it

)

where ∂∆EVit
∂κs

( ∂∆EVit
∂κm

) is the element in the 1st (2nd) column such that the corresponding

productivity in the row is φit . To finish the nested fixed-point algorithm, we need to

compute the derivatives of the expected value function, ∂∆EV/∂γ . Applying the implicit

theorem to Tκ (∆EV ) = ∆EV , we get

∂∆EV
∂κ

=
[
I−T ′κ

]−1 ∂Tκ (∆EV )

∂κ

From (A.31), we know that

∂Tκ (∆EV )

∂κ
=

[
∂Tκ (∆EV )

∂κs
, ∂Tκ (∆EV )

∂κm

]
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where

∂Tκ (∆EV )

∂κm
= βk (βP0− I)P1 (I−βP1)

−1
[

1− exp
(
−∆EV

γ1

)
− ∆EV

γ1 � exp
(
−∆EV

γ1

)]
∂Tκ (∆EV )

∂κs
= βkP0

[
1− exp

(
−∆EV

γ0

)
− ∆EV

γ0 � exp
(
−∆EV

γ0

)]

are both 200-by-1 vectors and k is the exogenous state variable: capital stock. We use � to

denote the element-wise product. To determine the step size λ , we use secant iteration

to find the solution to ∂ f (λ )/∂κ = 0, where f (λ )≡ L(κ +λD(κ)). The iteration is given

as:

λ
m+1 = λ

m−
(
λ m−λ m−1

)
f ′ (λ m)

f ′ (λ m)− f ′ (λ m−1)
(A.36)

where

f ′ (λ m) = ∑
i,t

∂ lit (κ +λ mD(κn) , ∆EVit)

∂κ ′
D(κn) (A.37)

This iteration determines the optimal step size λ ∗. Finally, the iteration stops when

‖κn+1−κn‖ ≤ 1e−6.

C.4 Alternative indicator for patent quality

A widely used indicator for patent quality is patent citations. However, China’s patent

data are lack of patent citations. Dang and Motohashi (2015) propose to use the measure

of knowledge breath as a proxy for the quality of patents. It is questionable whether

this measure is a good indicator for the quality of patents. In Figure A.3, we display

the correlation between the estimated value of patents to the indicator based on Dang

and Motohashi (2015). Interestingly, we find barely no correlation between these two

indicators. This may suggest that the knowledge breadth measure is not a good indicator

for representing the quality of the patents. At least, it does not reflect the private value
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of patents measured as increasing the firm’s value.

Figure A.3: Estimated patent value and knowledge breadth-based measure
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Note: DM measure for the patent quality is based on Dang and Motohashi (2015), which uses
the breadth of knowledge for each patent claim. Our measure for the patent quality is based on
the change in the expected firm value.
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