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Abstract

This paper investigates the role of R&D investment in shaping the relationship between financial
constraints and aggregate total factor productivity (TFP). I study a dynamic model in which R&D
investment, which affects productivity evolution endogenously, is subject to financial constraints. I
parameterize the model with production, innovation, and balance sheet data. The estimated model
implies sizeable static TFP losses caused by capital misallocation and dynamic TFP losses from dis-
torting R&D investment. The accumulation of internal funds reduces the static TFP loss gradually.
In contrast, because R&D has a persistent effect on productivity, the dynamic TFP loss rises ini-
tially and declines later. Compared to a model with exogenous productivity, innovation investment
makes firms less able to use self-financing to reduce TFP losses, and prolongs the transition. En-
dogenous productivity growth amplifies the gains in TFP and output from financial reform, and
leads to a longer-lasting consequence from a credit crunch. Improving the pledgeability of intangi-
ble assets in China to be the US level reduces the static TFP loss only 0.4%, but the dynamic TFP loss
by 7.1%.
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1 Introduction

Differences in total factor productivity (TFP) are an important contributor to disparities in income
and development across countries. Underdeveloped financial markets can reduce aggregate TFP by
distorting innovation decisions. Despite a large literature that has documented a stimulating effect
of financial development on innovation investment and productivity growth,1 financial frictions are
often absent in R&D investment models.? This limitation prevents us from analyzing the interplay of
financial friction, R&D investment, and TFP together. The objective of this paper, thus, is to evaluate
the role of R&D investment in shaping the relation between financial constraints and aggregate TFP.

R&D activities have a persistent effect on productivity. When financial constraints restrict a firm’s
ability to undertake R&D investment, the negative consequence on productivity will be carried over
time. Endogenous R&D investment complicates the relationship between financial constraints and
aggregate TFP. First, introducing R&D investment can potentially amplify the TFP loss from financial
constraints. Financial constraints, meanwhile, can cause (1) a static TFP loss by generating differences
in the marginal product of capital across entrepreneurs- i.e., giving rise to a misallocation of capi-
tal, and (2) a dynamic TFP loss by constraining R&D investment and hindering productivity growth.
Second, R&D investment can also influence the efficacy of self-financing in reducing TFP losses by
increasing productivity and assisting the accumulation of (intangible) assets. As Moll (2014) points
out, in the presence of financial constraints, the dynamism of productivity and assets is the key to
understanding transition dynamics and the steady state of TFP.

How much does the R&D channel account for the productivity loss caused by financial con-
straints? How does R&D investment affect the efficacy of self-financing in the reduction of TFP losses?
This paper attempts to shed light on each of these questions by using a quantitative model of R&D in-
vestment with financial frictions. I estimate the model using a panel of manufacturing firms in China,
a country with relatively less developed financial markets. The parameterized model matches firms’
size distribution as well as their decisions on R&D investment and asset accumulation. Through this
model’s lens, I first quantify static and dynamic TFP losses. I then analyze the transition dynamics
and the steady state of the model. Finally, to gauge the importance of R&D investment for under-
standing the relationship between finance and TFP, I compare the results of the estimated model with
a model’s special case where the productivity process is exogenous.

I find that, on average, financial constraints cause a TFP loss of 29% through the R&D channel
within the sample period. This is close to the static TFP loss (37%) caused by capital misallocation.
To examine the robustness of our benchmark results, I have explicitly considered the heterogeneity
in R&D costs, heterogeneity in cost-benefits structure of R&D across industries, and endogenous

1For the related empirical evidence, see Rajan and Zingales (1998); Chava et al. (2013); Gorodnichenko and Schnitzer (2013);
Kerr and Nanda (2015), among others.

2Gee Klette and Kortum (2004); Eaton and Kortum (1999); Aw et al. (2011); Doraszelski and Jaumandreu (2013); Peters et al.
(2017), among others.



uncertainty in R&D investment. The quantification of TFP losses is robust to all of these modifications.
Re-calibrating the exogenous-productivity model predicts a similar degree of productivity loss, yet it
fails to detect the dynamic TFP loss caused by distorted R&D decisions.

Over time, the accumulation of internal funds enables some firms to escape from financial con-
straints, which reduces TFP losses. In the model with R&D, over time, the static TFP loss declines
more slowly because the endogenous productivity growth tends to entrap relatively more firms in
financial constraints. As a results, in the steady state, static TFP loss is reduced to be 18.4% (16.7%) in
the model with endogenous (exogenous) productivity. In contrast, because of the persistent impact
of R&D on productivity, the dynamic productivity loss rises initially and falls ultimately as firms be-
come wealthier. In the steady state, dynamic TFP loss is 20%, showing only a decrease of 9%. This
suggests that it is more difficult for firms to undo the dynamic TFP loss by self-financing.

I explore several policy implications of the quantitative model. First, I consider a financial reform
that relaxes the credit constraints permanently. I find that the boosting effect of financial reform on
aggregate TFP and output is amplified when considering the endogenous response of R&D invest-
ment. Second, I study a credit crunch by tightening the financial constraints for one period. I show
that the detrimental impact of a credit crunch on aggregate TFP and output tends to be longer-lasting
when I account for the endogenous growth of productivity.

My model also sheds light on the impact of using intangibles as collateral on R&D investment and
TFP. In practice, products of R&D investment, such as patents and trademarks, are used as collateral
when firms borrow from financial institutions.?> In the last counterfactual experiment, I investigate
the impacts of allowing more intangibles to serve as collateral on R&D investment and TFP. I find
that improving the pledgeability of intangible assets in China to be as the US level encourages R&D
investment and reduces the static (dynamic) TFP loss by 0.4% (down to 7.1%). Employing a policy
shock on patent pledge financing in China, I also provide causal evidence supporting that increasing
the pledgeability of intangible assets enhances the R&D investment in China.

This paper is closely related to studies that use quantitative models to analyze firms’ incentives
for undertaking R&D investment (Eaton and Kortum, 1999, 2007; Aw et al., 2011; Doraszelski and
Jaumandreu, 2013; Warusawitharana, 2015; Peters et al., 2017). In these predecessor models, R&D
investment entails certain costs and leads to productivity growth in the future. By assuming that
firms operate in a perfect financial system, these models provide no room for analyzing the impact of
financial development on R&D investment and productivity dynamics. Meanwhile, there is growing
reduced-form evidence that financial markets do play a key role in supporting R&D investment (Ra-
jan and Zingales, 1998; Robb and Robinson, 2012; Chava et al., 2013; Gorodnichenko and Schnitzer,
2013; Nanda and Nicholas, 2014; Kerr and Nanda, 2015; Cornaggia et al., 2015; Varela, 2018). In gen-

3As for relevant empirical studies, Loumioti (2012) finds twenty-one percent of US-originated secured syndicated loans
during 1996-2005 have been collateralized by intangibles. More specifically, More recently, Hochberg et al. (2018) document
that start-ups with more redeployable patents as assets are able to receive more funds from investors. And Mann (2018) shows
that patents that are pledged as collateral to help US firms raise more debt and spend more on R&D.



eral, these studies employ certain indicators to measure financial development and then link them to
firms’ innovation behavior. The current paper contributes to these studies by explicitly considering
financial constraints in a structural model of R&D investment.

This paper also contributes to the literature that focuses on the role of endogenous productivity
change in understanding the impact of various distortions, particularly tax distortions (e.g., Bhat-
tacharya et al. (2013); Bento and Restuccia (2017); Da-Rocha et al. (2017)) and financial frictions (e.g.,
Mestieri et al. (2017); Vereshchagina (2018); Caggese (2019)).* Vereshchagina (2018) and Caggese
(2019) are the two most relevant papers. Vereshchagina (2018) a variation of the Bewley-Ayiagary-
Hugget model (Huggett, 1993) in which firms can invest in intangible capital to improve their future
productivity in a deterministic way. In contrast, this paper extends a Hopenhayn firm dynamics
model (Hopenhayn, 1992) by treating productivity as a controlled Markov process: future productiv-
ity is partly random and partly under the control of R&D investment. The current paper goes on to
estimates its own model by focusing on dynamic decisions about R&D and wealth accumulation. It
analyzes the effect that innovation investment has on the efficacy of self-financing for reducing TFP
loss along the transitional path and in the steady state.

Caggese (2019) analyzes the role of innovative investment in understanding the impact of financial
constraints on firm growth. He argues that incorporating radical as well as incremental innovations
can explain the differences in the evolution of firm sizes over time between poor and rich countries.
My paper differs from Caggese’s work in several aspects. First, I focus on the influence of R&D invest-
ment on affecting the relationship between financial constraints and productivity. Second, I allow the
output of R&D investment-the intangible assets—to be used as collateral. Third, I incorporate R&D
into the productivity process a 14 Aw et al. (2011). Therefore, R&D investment always faces a certain
degree of uncertainty in my model, as with the radical innovation modelled by Caggese (2019).

The rest of this paper is organized as follows: In Section 2, I introduce the benchmark model and
a decomposition of TFP losses. In Section 3, then, I present the data and estimation results. Section 4
displays the results of the quantitative analysis, while Section 5 analyzes several robustness checks.
Section 6 concludes the paper.

2 The Benchmark Model

In this section, I introduce a heterogeneous-firm model in which firms finance their R&D investment
out of cash flow; a firm’s capital investment is restricted by a collateral constraint a 14 Midrigan and
Xu (2014) and Moll (2014). More importantly, I also introduce intangibles as a collateral for borrowing.

“More broadly, these studies originates from a large literature on financial frictions and economic development (see Jeong
and Townsend (2007), Buera et al. (2011), Buera and Shin (2013), Midrigan and Xu (2014), and Moll (2014), among others).
In most of such previous studies, the productivity process has been treated as exogenous. See also Buera et al. (2015) for an
excellent review of this literature.



2.1 Setup

Production I consider an industry populated with a fixed number of firms, each producing a single
variety. Firm ¢ operating in period ¢ uses labor l;;, capital k;;, and a constant-return-to-scale produc-

tion technology to produce its output g;;:
it = ukiyly, 1

where 0 < o < 1 is the capital’s share. ¢;; is the current state of technology. Labor is hired in a
competitive market at the wage rate w. Each firm has a constant-elasticity demand function:

qit = pz_tg ’ (2)

where ¢ is the demand elasticity and assumed to be greater than one. The revenue production func-
tion is
-« =
Yit = (éf)itk%lit ) 7 3)

which has decreasing returns to scale.

R&D and Productivity Following Aw, Roberts and Xu (2011) and Doraszelski and Jaumandreu
(2013), I assume that R&D affects the firm’s productivity process. Specifically, letting x;; be R&D

investment, the log-productivity follows a controlled Markov process:

In (Gity1) = pIn(dir) +yIn(wi + 1) + &iry1, 4)

where v governs the marginal effect of R&D investment on productivity; v > 0 means that more
R&D investment leads to a more favorable productivity distribution in the future. Note that In(z;; +
1) = 0 when z;; = 0, meaning that zero R&D investment generates no enhancement in productivity.
Also note that 01n(¢i+1)/0zi = v/(xi + 1), implying that the rate of growth of firm productivity
increase with x;; at a decreasing speed, showing no discontinuity at the extensive margin.® p is the
persistence of the productivity.® ;11 is an exogenous i.i.d shock that follows a normal distribution
N (O, ag) . 0¢ measures the uncertainty facing R&D investment. A larger o; indicates a higher degree

5 Another possible specification is In(¢s¢+1 = pln(Pit) +v0l(zit) + 1 In(zit + 1) + &it4-1, where I is an indicator function
equals to one when x;; is positive and zero otherwise. Doraszelski and Jaumandreu (2013) have considered such a possibility.
However, I do not find supporting evidence for this specification in our data set.

6 Another interpretation of p is that it captures the depreciation of past R&D investment. To see this, note that I can rewrite
this productivity process as

t—1 t
Git = exp | Y 8 yIn(wi + 1)+ > 8% &ur |
s=0 s'=1

which means that the state-of-art technology summarizes all of the past R&D activities and exogenous shocks.



of uncertainty.”

Financial constraints The extent to which firms can use capital is determined by following con-
straint:

kir < Laizﬁ + L 7,7t ®)

1-6 1-0""

where § € [0, 1] captures the severity of borrowing constraint. A larger # means a better financial
environment where firms have better capacity to borrow. In particular, when § = 1, the capital
constraint is never binding, which indicates a perfect financial system. ¢, summarizes the value of
intangible assets (such as patents, trade marks, and other intellectual properties) used as collateral
when a firm obtains external financing.® 7 is the elasticity between pledgeable intangible assets in
response the measured productivity. A larger n means firms with relatively high productivity can
borrow against more intangibles. I expect that > 0 so that more intangible assets are available for
more productive firms. Different from Midrigan and Xu (2014), who treat the intangible asset to be
fixed over time, I allow it to be varying across firms and time. This more realistic setting allows us
to analyze the potential effect of R&D investment on relaxing financial constraints by accumulating

intangible assets.

Firm’s problem and static choices Each firm is owned by an entrepreneur whose objective is to

maximize its life-time utility:
oo 1—
By 6 Gy 1
0 1—¢ )
t=0

where c;; is the entrepreneur’s consumption and € denotes the inverse of elasticity of inter-temporal

substitution. He is subject to a budget constraint
cit +1(wit) f+ C(2it) + Qit1 < yir — whip — (1 +6) ki + (1 +7) aie, (6)

where I (z;;) is an indicator function of z;; which equals one when x;, is positive and zero otherwise.
Unlike existing R&D investment models, [ assume that the financing of R&D costs faces credit market
imperfections. Hall and Lerner (2010) argue that the nature of R&D investment-intangible outcome
and high degree of uncertainty, makes it more costly for innovators to use external financing for R&D
activities. Consistent with their finding, I assume that R&D investment can only be financed using
the firm’s internal cash flow. The innovation investment is modelled as a two-step process. First, an
entrepreneur needs to pay a fixed cost f to find a new research idea.” By introducing a fixed cost

7In the benchmark model, R&D investment does not alter the conditional variance of the future productivity. In an alterna-
tive specification, I relax this assumption. See more details in the section of extensions and robustness.

8In Appendix B, I provide a micro foundation for the chosen specification of intangible assets.

9Peters et al. (2017) and Chen (2019) have documented the persistence of R&D activities and distinguished between start
up costs and maintenance costs. For computational tractability, I impose that the start up costs are equal to maintenance costs.



for innovation investment, the model captures an important data feature that only a small fraction
of firms undertake R&D investment. The entrepreneur also needs to build research labs and hire
research teams to implement the innovative idea. C' (x;;) represent these expenses. Following a large
body of investment literature, I use a quadratic form for the R&D investment:
d
Clziy) = ixi (7)
Firms take the interest rate and wage rate as given, therefore I can obtain optimal choices of labor

and capital by solving the following constrained optimization problem:

lm?{ {yir —wliy — (r + ) ki }
¢ 0 n
T ki < — .
Stklt_1_9+1_9¢zt

The first-order condition delivers that

(1—a)(oc—1)yq

lip = 8)
ow
a(o—1)yi
kip = ———F"— 9
"7 R (ai, dur) ®)
and MRPK is given by
a/1l—a % a 9¢7I 1—m 771+}171
— it it
- = ) L at 1
th max r+6’m(r‘nw> [¢zt<1_0+1_0> ] (O)
R(ait,pit)

where m = o /(0 — 1) is the markup. There are two regimes in which MRPK are determined by dif-
ferent factors. When the financial constraint is not binding, R(a;:, ¢i¢) is equal to the market’s capital
price (r + ). In contrast, when the financial constraint is binding, the cost of capital R(a;, ¢i¢) is
jointly determined by a;¢, ¢4+, as well as parameters including ¢ and 7. In particular, the costs of using
capital is non-increasing in net worth a;;, meaning that wealthier firms tend to face a lower shadow
costs of using capital conditional on the productivity, thus less likely to be constrained. Because the
pledge-able intangible assets ¢, enter into the financial constraint, the relationship between the cap-
ital costs and productivity depends on model parameters. To see it more clearly, for any level of
wealth a;¢, let’s define a cut-off productivity b(a;;) as

R (ait, Q_ﬁ(ait)) =r+9 11)



The relationship between #(a;;) and a;; is affected by the value of 7. In Figure 1, I illustrate how
#(a;) varies with a;; in cases when 7 < o — 1 and n > o — 1, respectively. The left panel shows
that when < o — 1, ¢ is increasing with a;. Given the level of net worth, firms that are more
productive are more likely to have a binding financial constraint. In contrast, there is an inverted U
relationship between a;; and #(a;;) whenn > o — 1. In the region where B(ay) is increasing with
a;, the bifurcation is similar to the situation when n < ¢ — 1. However, when &(ait) is decreasing
with a;;, conditional on net worth, less productive firms are more likely to be constrained because of
a lack of intangibles to be used as collateral. In summary, if #(a;;) increases (decreases) with a;y, it
describes the highest (lowest) productivity above (below) which the financial constraints are binding.
Note that when 7 = 0 the model degenerates into the case in which intangible assets are fixed across
periods. It is also easy to see that ¢(a;;) is always increasing in §, meaning that relatively fewer firms

are constrained in a better financial environment.°

Figure 1: Relationship between net worth and cut-off productivity for different values of n
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Note:When ¢ is increasing (decreasing) with a;+, more (less) productive firms tend to be more constrained.

2.2 Value Functions and Equilibrium

Value functions Now I omit firm and time subscripts and formulate the entrepreneur’s problem in
a recursive form. The state variables are (a, ¢). Aggregate variables are assumed to be constant and
exogenous to an individual firm. An entrepreneur makes two dynamic decisions: asset accumulation
and R&D investment. The firm’s recursive problem is given by

V (a, ¢) = max { fl_e +BEV (d, ¢/)} 12)

a’,x — €

10See the math appendix for related proofs.



subject to a budget constraint:

c—HI(x)f—i—ng—!—a’:%y(a,qﬁ)—!—(l—&—r)a (13)

where y (a, ¢) is the firm’s revenue generated by optimal labor and capital choices. The firm’s revenue
is given by

Oéa(l _ a)l—a m—1

y(a, ) = [ } " R (a, 920, (14)

mwl—o
The model has extensive and intensive margins of R&D investment due to the fixed cost of under-

taking R&D investment. This generates kinks in the value function. Let V° (a, ¢) (V! (a, ¢)) be the
value function when z = 0 (z > 0). Then V (a, ¢) can be expressed as

V (a, ¢) = max {VO (a, ¢), V! (a, qS)} (15)

Note that V? and V! can be written recursively as

Nnil—e
VO (a, ) = ma}x{w 45 [ Vi )@ d<z>’)}, 16)
a — € R
/ 1—e
V' (a,0) = max{ et Il [ Vi e, d¢'>} , 7)
a’,x — € R
where the consumption levels are:
(a6, @) = 2y (a, 6)+ (1 +r)a—d (18)
c(a, 6, v) = cla, 6, a) ~  — 527 (19)

Qu (¢, -) (Qo (4, -)) denotes the transition kernel of the stochastic productivity process when R&D
investment is positive (zero). At the extensive margin, a firm invests in R&D if and only if

V'(a, ¢) >V°(a, ¢) (20)

Conditional on that the firm finds it optimal to invest in R&D, the intensive margin of R&D is char-
acterized by (17). Because financial constraints lower firm’s current profits, it will also have a nega-
tive effect on the firm’s innovation investment. It is easy to verify that the R&D investment is non-
decreasing with 6.



Equilibrium We are interested in both the transition dynamics and steady state of our model. To
this end, we consider a partial recursive equilibrium which we formally define as below.

Definition 1. A partial recursive equilibrium is a set of value functions V (a, ¢), policy functions a’ (a, ¢),
z (a, ¢) such that given P = Q = 1:

1. V (a, ¢) solves the firm’s Bellman equation;

2. d (a, ¢) and z (a, ¢) are optimal decision rules for net worth accumulation and R&D invest-

ment, respectively.

Since the partial recursive equilibrium does not require that state variables are in stationary dis-
tributions, we can analyze firm dynamics over time by simulating the model forward. To analyze the
long-run effects of R&D investment in affecting the relation between finance and aggregate TFD, I also

consider the steady-state equilibrium of the model.

Definition 2. A steady-state equilibrium is a partial recursive equilibrium such that joint distribution

of (a;t, i) is invariant over time.

Given the joint distribution of (a, ¢), the aggregate TFP, output, and inputs are determined. In the

appendix, I discuss the existence of the steady state of the model.

2.3 Exogenous productivity

Inow briefly discuss a special case of the benchmark model with endogenous productivity: the exoge-
nous productivity. The benchmark model degenerates into a model of exogenous productivity when
we impose v = 0 or R&D costs to be infinity. Because the benefits from R&D investment is realized
through improving productivity, these conditions immediately imply that no firm would undertake
R&D investment. Let W (a, ¢) be the value function when no R&D investment is undertaken, I can
write the firm’s recursive problem as

W(a,6) = max { LS | Wi ). d¢'>} 1)

a

subject to the budget constraint
/ 1 !/
C(a7 qu a ) = ;y(av ¢) + (1 + T)a’ —-a, (22)
and the exogenous productivity evolution rule:

In(¢ir1) = p1In(dir) + - (23)



When the productivity is exogenous, the only dynamic decision is asset accumulation. The equilib-
rium concepts I have just described for the endogenous productivity model can be readily applied
here.

2.4 Aggregation and TFP losses
Let N be the set of active producers, the measure of which is N. The sectoral output is
Qi =TFPQK}L;~" (24)
where the aggregate physical productivity TF PQ; can be expressed as'!
Tt
Jien Rz(lig)ﬁfldi}

|
TFPQ, = {fieN R3(1_g)_1¢2_1d4a

(25)

In the absence of financial constraints (f = 1), R;; is common to all firms and equals to r + ¢. This

entails an efficiency allocation of capital, which implies an efficient level of aggregate TFP:

1
o—1
TFPQ¢ = ( qs;;ldi) (26)
i€N

R&D investment affects the evolution of productivity. By distorting R&d investment, financial con-
straints also have an influence on an individual firm’s fundamental productivity. To analyze the TFP
loss from underinvestment in R&D, I need to consider the endogenous evolution of fundamental
productivity in the counterfactual scenario when 6 = 1.

I propose a counterfactual experiment to analyze the impact of financial constraints on aggregate
TFP. I choose an initial period, ¢y, and treat productivity and net worth in this period as the funda-
mental state. The chosen fundamental state is the starting point of our analysis. Given the initial
productivity ¢, let’s define ¢}, as the productivity in the counterfactual scenario in which no bor-
rowing constraint exists (see Panel A of Figure 2). In this case, the MRPK is equalized for all firms.
The associated best aggregate TFP is

1

TFPQ; = { / eN(qbz‘t)“} o (27)

I can decompose the actual aggregate TFP as

TFPQ, = TFPQ; — (TFPQ; — TFPQS) — (TFPQS — TFPQ,).

11Gee Appendix A for the derivations.
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Figure 2: Decomposition of TFP loss
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This further implies the total TFP loss as a share of TF PQ¢ can be computed as'?

TFPQ; — TFPQ,

Total TFP Loss =
ota 0SS TFP Q?
_ TFPQ; —TFPQ¢ A TFPQ; — TFPQ, 8)
B TFPQ¢ TFPQ¢
dynamic TFP loss static TFP loss

The equation above decomposes the total productivity loss into two components (See Panel B of Fig-
ure 1 for three statistics of TF'PQ)). The static TFP loss is computed as in Hsieh and Klenow (2009),
which measures the impact of capital misallocation in reducing the aggregate TFP. The dynamic TFP
loss distortions in R&D investment caused by financial constraints. The proposed method of ana-
lyzing the TFP loss can be performed starting from any chosen states. This flexibility enables us to

consider TFP dynamics and sources of its loss on the transitional path. Below I provide a characteri-
zation of these two components of TFP loss.

Static productivity loss The model features endogenous productivity evolution. By simulating the
model, I notice that the marginal distributions of net worth and productivity are very close to log-

normal distributions. I find it convenient to provide a characterization of the static TFP loss under

121 choose to use T'F' PQ* as the scaling variable to avoid the scale difference when comparing the results to that of exogenous
productivity model.

11



the assumption that a;; and ¢;; follow a joint log-normal distribution:

log (a;t) N lha o2 POT4
log (¢it) po || Poacy  0F ’

where p, and p4 denote the mean of net worth and productivity, respectively. o2 and 0'35 are the
variance of net worth and productivity, separately. p is the correlation between net worth and pro-
ductivity. Under the assumption that productivity and MRPK are log-normally distributed, Midrigan
and Xu (2014) and Ek and Wu (2018) have provided analytical expressions of aggregate TFP, show-
ing that financial constraints reduce aggregate TFP. However, with the assumption that firms face
borrowing constraints, the distributional assumption on productivity and MRPK is unlikely true be-
cause obviously MRPK is bounded below by r + §. By assuming that net worth and productivity
follow a joint log-normal distribution, I provide a better approximation of the TFP loss. Employing
the law of large numbers, I can express the aggregate TFP under efficient capital allocation as:

TFPQ{ = N7-1el0~ Dot 550} (29)

Clearly, the efficient level of aggregate TFP is increasing with the mean and variance of the pro-
ductivity distribution. For the empirical relevance, we consider < ¢ — 1 which implies that more
productive firms are more likely to be financially constrained. In this case, the fraction of constrained

<—/(J°o/¢::)da<a,¢>,

where G(a, ¢) represent the joint log-normal distribution of (a, ¢).!*> When ( is relatively small, it can

firms can be calculated as

be shown that the aggregate TFP can be approximated as

TFPQ =7YJ 'Ne7ielo-Dnet 5o} (30)
where T is defined as
oo rd(a) )
TO = / / ¢U_ dG(a,¢) (31)
o Jo
— /oo L 20 (h(2)) d
N J_oo V21 ’

13See the math appendix for related math derivations.
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in which h(z) = %, and
oy

1

(2) = In (et HoDaerou))

<

(2) = g + (0 = D(L+ p— V0% + pose.

®(-) is the CDF of standard normal distribution. Since ® ’\’Z)iz(zv < 1, we know that Ty < 1. This
—p?0y

implies that TFPQ < TFPQ°. Therefore the static TFP loss can be computed as
_1
Static TFP loss =~ 1 — Y ! (32)

It is easy to show that the static TFP loss will be increasing with yi, and decreasing with ji,. This
means that both the levels of productivity and net wealth will affect the evolution of static produc-
tivity loss. The impact of the level of productivity on static TFP loss is the key for understanding
the role that R&D investment plays in altering the dynamics static TFP loss. When 14 is fixed over
time, allowing firms to accumulate wealth will reduce the static TFP loss unambiguously. However,
when a firm can invest in R&D to increase its productivity, 11, may also be growing over time, which
can potentially exacerbates the capital misallocation. This implies that endogenously productivity
growth may undermine the role of self-financing in reducing TFP losses over time. In addition, T is
increasing with respect to 6 because a larger ¢ implies a higher ¢(a), meaning less firms have binding
financial constraints. Lastly, it is easy to verify that the TFP loss is increasing with (: a larger fraction

of constrained firms leads to lower aggregate TFP.

Dynamic productivity loss Let’s continue to analyze the dynamic TFP loss. Given the productivity
fundamentals {¢;;, } in period to, using the optimal R&D decision rule I can write down the produc-
tivity in the next period as follows:

In(ito1+1) = pIn(dit,) + v In(x(aity, ity 0) + 1) + Eitg41

ln((bj;t(rl»l) = pln(¢it0) + ln(m(ait(w ¢ito; 0*) + 1) + 5it0+1
The difference in future productivity is determined by the gap in R&D investment, which reflects
different levels of financial constraints. To control the impact of exogenous productivity shock, I

impose same productivity shocks in these two scenarios. Conditional on the initial states of period

to, the one-period mean difference of these two productivity distributions is

(33)

x(@ity, Pity; 0%) + 1)

Eto [ln(¢:t0+1)} - Eto [ln(¢it0+1 ﬂ =7ln < x(aito, ¢ito; 0) +1

13



If financial constraints restrict R&D investment, it is obvious that x(a;t,, it ; 0*) > x(ait,, Pito; 0)- This
implies that financial constraints cause underinvestment in R&D. Looking forward, to quantify the
accumulative effects of financial constraints on TFP loss, I keep track of the two different productivity
trajectories. In particular, in period ¢ + s, the mean difference in productivity is

* - s—j Tho1+1
E;, [ln(¢ito+s)] — Eq¢, [In(ditors)] = Z p* 7 In (m) (34)
j=1 0TJ—

where @} ;= x(afy 41, Olgq—1307) and @11 = (@ite+j1, dito+j—1;0) represent R&D in-
vestment in two different scenarios. When productivity follows a log-normal distribution, employing
(26), the dynamic productivity loss can be expressed as:

Dynamic TFP loss = % -1 (35)
TFPQS, ..
5 . xy o+ 1
= ~1 QR (TS I |
" )W;p ! <$to+j—1 +1

Equation (35) has several implications. First, the dynamic TFP loss reflects the current and past efforts
of R&D investment and piles up over time. Second, R&D investment in more distant periods tends to
be less important for current productivity because of the depreciation rate p. These two observations
are critical for the understanding of the change in dynamic TFP loss over time. As time evolves, poor
firms accumulate more wealth and grow out of financial constraints. This narrows the per-period
difference in R&D investment. In addition, because past disparities in R&D investment become less
important, dynamic TFP loss tend to decrease eventually. Lastly, the dynamic productivity loss will
also be affected by the initial state of the counterfactual experiment.

2.5 Empirical goals

Before I introduce the data and estimation strategy, I now lay out my empirical goals. To begin with, I
am going to measure the firm-year level productivity using a rich firm-level data set. Along with the
observed information on firm net worth, capital, and employees, I can parameterize the equation of
capital constraint by matching the cross-section distribution of capital and labor. Then I estimate the
productivity evolution equation. In particular, I follow Vereshchagina (2018) to separately estimate
the endogenous productivity process with R&D and the exogenous productivity process without
R&D. This helps us understand the role that R&D plays in shaping the relation between R&D and
TFP. The last empirical objective is to determine the costs of R&D investment. I choose cost param-
eters such that the R&D investment and net worth decisions predicted by the structural model are
consistent with the data.
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Utilizing the parameterized model, I analyze the effects of R&D investment on the relation be-
tween financial development and aggregate TFP by varying . In the exogenous productivity model,
the only channel through which financial development can improve aggregate efficiency is reducing
misallocation. In contrast, in the endogenous productivity model R&D investment also responds to
the financial development and enhances the fundamental productivity as well as aggregate TFP. The
quantitative exercise allows us to quantitatively evaluate the strength of R&D channel through which
financial constraints affect the productivity distribution and aggregate TFP.

Because some firms can accumulate wealth over time to overcome financial constraints, the conse-
quence of financial frictions differs in the short- and long-run. This point is theoretically explored in
Moll (2014). How does the option of R&D investment affect transition of TFP losses? Eventually, what
is the impact of R&D investment on the efficacy of self-financing in cutting TFP losses? Simulations

of the empirical model will help us answer these questions.

3 Data and Estimation

3.1 Data

I use the administrative income tax records from Chinese State Administration of Tax (SAT) from
2008-2011. The SAT is in charge of collecting taxes and auditing, similar to the IRS in the United
States. The SAT in China maintains its own firm-level database of tax payments as well as other
balance-sheet and financial statement information that is necessary for tax-relevant calculations. For
the purpose of this study, I use the information to estimate productivity and calculate other relevant
variables. I have obtained these tax records from 2008 to 2011. I have followed several cleaning
procedures. First, I have deleted the duplicated observations within a year. For firm names that are
repeated within a year, I use the tax id as their unique identifier. Second, I have deleted observations
with abnormal values for interested variables. These include: (i) negative sales, debt, total asset, fixed
asset; (ii) number of employees smaller than 10; (iii) birth year later than 2011 or earlier than 1900.
The final data set I use for estimation is a balanced panel with 21,428 firms spanning over four years.
In Appendix D, I have included details of data processing and the construction of relevant variables.

3.2 Parameterization

The estimation procedure is a two-step procedure. In the first step, I calculate productivity using the
data with some externally determined parameters. Together with data on net worth, this allows us
to (i) calibrate the parameters describing the financial constraints, and (ii) estimate the productivity
evolution equation. The second step employs a Simulated Methods of Moments (SMM) estimator
which requires solving the dynamic structural model and pin down the parameters characterizing
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the costs of R&D investment.

External parameterization I first parameterize several parameters by choosing their conventional
values.These parameters and their sources of values are summarized in following table.'* The risk-
free interest rate is chosen to be 0.0575, which is average of real lending interest rates between 2008
and 2011. Because the discounting rate is not separately identified in my model, I refer to the existing
literature. Midrigan and Xu (2014) choose a discounting factor to be 0.92, Gopinath et al. (2017) set
the discounting rate to be 0.87, and David and Venkateswaran (2019) set the value to be 0.95. In the
end, I choose the discounting rate is chosen to be 0.90, which is smaller than 1/(1 + r) = 0.946.1°
The depreciation rate is set as 10% as in Song et al. (2011). I follow Midrigan and Xu (2014) to use a
log-utility function. The capital share « is consistent with David and Venkateswaran (2019). Lastly,
the value of the substitution elasticity is from the survey by Head and Mayer (2014).

Table 1: Baseline external parameters

Parameters r 6 153 € «a o
Values 0.0575 0.10 090 1.00 050 5.00

Internal estimation Using the revenue production function (3), the physical productivity is esti-

mated as: .
(pityit)
kel

itit

b = (36)
I use firm’s value added to measure p;.y;;. ki: is measured using the firm’s deflated fixed assets.
I use wage bill to measure /;; in order to account for the unobserved differences in human capital
composition in different firms. Figure 3 displays the kernel density of estimated productivity. The
logged productivity ranges from -5 to 5, showing a large dispersion.

Note that 6, n, and w jointly affect the firm’s choices of capital and labor. Because these choices
are static, I calibrate them using the cross-section moments including averages of capital-to-net worth
ratio, capital-to-productivity ratio, capital stock, and number of employees, as well as 0.25, 0.5, 0.75
percentiles of employees and capital. I choose (6,7, w) to minimize the distance between the model-
generated moments and these targeted moments. In Table 2, I display the value of targeted moments
in the data and the calibrated model. The calibrated values for (6,7, w) are presented in Table 3.
6 = 0.324 implies that only around 32% of the physical capital and intangible assets can be used as

4The capital share can potentially be backed out using the data if no distortions are imposed in the labor market. Note that
mwliyg

Yit
15The value of discounting rate will mainly affect the value of estimated R&D costs, it does not affect the quantitative results

of analysis of aggregate TFP loss.

by (8) I know that o = 1 — mwl;¢ /y;+. Therefore o can be estimated as & = ﬁ ZnNzl Zle (1 —
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Figure 3: Kernel density of estimated productivity

year=2008 year=2009
year=2010 year=2011

collateral when the firm borrows from the financial institutions. This value is smaller than that is
used in the literature. One possible reason is that the intangible asset can also be used as collateral
in the model. n = 0.513 implies that the one percent improvement in the productivity will lead to
0.513 percent increase in the pledge-able collateral when using external financing. Note that n <
o — 1, implying that the cut-off productivity function (¢(a;;, #)) is increasing in a;;. This predicts that
wealthier firms are less likely to be constrained in the empirical model.

After obtaining the productivity estimates, I can estimate the productivity process using a regres-
sion as follows:

In (¢itr1) = pIn(@ie) +yIn (@i + 1) + pje + Eirpa (37)

where 115, denotes a three-digit industry-year fixed effect. pj; captures the factors that affecting the
productivity evolution while not capture by our theoretical model. I apply OLS estimator to estimate
this linear model. The variance of the error term o7 is estimated by the sample variance of the resid-

uals. This step gives me estimates of (p, v, a?). I present the estimation results in the three middle
columns of Table 3. I can see that the estimated endogenous productivity process has a persistence
of 0.336. R&D investment shifts up the mean of the distribution of future productivity. In particular,
one percent increase in R&D investment leads to around 0.056 percent increase in the mean of future
productivity. The estimate of o¢ is 1.264, indicating that there is a relatively large dispersion in the
exogenous shock to productivity. I use a similar method to back out the productivity process with-
out R&D investment. In the absence of R&D investment in the productivity evolution, the estimated
productivity process has a larger persistence of 0.349. This upward bias is mainly driven by the pos-
itive correlation between R&D investment and current productivity. Now the inferred dispersion of
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Table 2: Targeted moments for internal calibration of (6,7, w)

targeted moments data model

log (ki ):
mean 4.35 3.66
25th percentile 335 269
50th percentile 453 472
75th percentile 550  6.06

log(lit):
mean 487 459
25th percentile 417 322
50th percentile 492 574
75th percentile 563 741

log (it /air) 2051  -1.20
1og(kst /i) 377 3.8

the productivity shocks turns to be 1.274, which is greater than that inferred from the endogenous
productivity process.

Table 3: Parameters determined using the data

Estimation Method Calibration OLS SMM
4 no| o v o | f d
Endogenous productivity  0.324 0.513 | 0.336*** 0.056*** 1.264 | 73.21*** 0.073"**
(0.006)  (0.002) (1.684)  (0.004)
Exogenous productivity ~ 0.324 0.513 | 0.349*** 0 1.274 n.a. n.a.
(0.006)

Note: the OLS estimation contains a full set of industry-year fixed effects. For the OLS estimation,
standard errors clustered at the 3-digit sectoral level are in the parenthesis. the *** indicates significance
level at 1% significance level.

Finally, I use simulated methods of moments (SMM) to estimate the parameters for R&D costs,
(f, d). I pool the data from 2008 to 2010. Given the observed net worth and productivity (a, ¢), I
solve the model to find the parameters to minimize the distance between model-generated optimal
R&D investment and net worth accumulation policies and the data. Define the vector of moments for
observation 7 in year ¢ as:

H(Jiit > O) ]I(l‘it > 0)
m(f,d) = | In(x; + 1) — | In(z;s + 1)
ln(ait+1) model ln(aitJrl) data
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The GMM estimator for (f, d) is obtained by minimizing following objective function:

Lif.d)=

i=1 t=1

N T !
\/%ZZmit(ﬂd)] W(f,d) WITTZZm“(f,d)] (38)

where the weighting matrix is W(f, d) = {ﬁ SN SE mitm;f} B . For a given pair of parameters
(f,d), I solve the model, simulate the optimal R&D and wealth accumulating choices, and compute
the objective function. Then I find parameters that minimize the objective function.To tackle the prob-
lem of possible local maximizers, I use the Markov Chain Monte Carlo (MCMC) estimator suggested
by Chernozhukov and Hong (2003).!° The estimation results shows that the fixed cost is around 7.32
million RMB (equivalent to around 1 million USD), which is significant at 1% significance level. The
fixed costs help explain that a large fraction of firms do not participate in R&D investment. The in-
tensive margin of R&D investment is characterized by the quadratic costs. The estimate of d is 0.073

and significant at 1% significance level.

3.3 Model fit

The estimated model provides a good match for the observed R&D investment and net worth accu-
mulation decisions. The estimated model predicts that 12% of firms undertake R&D investment, and
the data shows that 15% of firms are active in R&D activities. In the left panel of Figure 4, I plot the
percentiles of the simulated R&D investment distribution and future net worth distribution against
those observed in the data. I can see that in either case, the fitted line is almost straight and lies along
the 45-degree line, suggesting that the model simulated sample and the data sample have a similar
distribution. For the R&D investment, I see that the model matches relatively worse in terms of lower
percentiles of the R&D distribution, this may suggest that R&D costs may differ across firms. A larger
variable cost may be able to generate small R&D investment. Later I will discuss an extension of the
model with heterogeneity in R&D costs. Looking at the right panel of Figure 4, I see a very tight
match between the model and the data. This shows that the model is successful in predicting the
decision on net worth accumulation.

When comparing the results from the endogenous productivity model, it is important that these
model can generate close predictions of observed outcomes. Though the exogenous model always
predicts zero R&D investment, it produces very similar results of net worth accumulation rule and
output. In the left panel of Figure 5, I plot the percentiles of model-predicted future net worth against
that being observed in the data. It shows a tight match between the model and data in terms of the
choice of net worth accumulation. In the right panel of Figure 5, I show the future output predicted
by these two models are almost the same given the same states observed in the data. These results

16See Appendix F for a description of full computing procedures.
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Figure 4: Model fit for endogenous productivity model
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show that the exogenous productivity model and endogenous productivity model can match the net
worth and output data equally well.

Figure 5: Model fit for exogenous productivity model
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Note: the percentiles range from the 1% percentile to 99" percentile. The positive part of R&D invest-
ment is displayed.

3.4 Non-targeted moments

Now I investigate the model fit for the non-targeted moments. In particular, I explore several em-
pirical implications from our quantitative model with R&D investment. I begin by discussing some
firm-level implications of the model. These implications include cross-section correlations as well as
firm-level dynamic choices. To evaluate the external validity of the model, I look at two groups of

correlation moments. First, I look at the correlation between the log of MRPK (In(R;;)) and two state
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variables ¢ and a. The MRPK is constructed as in Hsieh and Klenow (2009).!” The second regres-
sion equation I am interested in is the relation between the dynamic decisions and the state variables.
The closeness in the parameters between the model and the data indicates the model behaves well
in terms of rationalizing the capital prices and the R&D decision. Moreover, these two regressions
provides two main firm-level predictions that are testable using the firm-level data.

Implication 1 Conditional productivity, the firm’s MRPK is negatively related to the firm’s net
worth. Conditional on firm’s net worth, MRPK is negatively related to firm’s productivity.

Implication 2 Conditional on productivity, both of firm’s R&D investment and future net worth
are positively related to firm’s current net worth. Conditional on firm’s net worth, R&D investment
and future net worth are also positively related to firm’s productivity.

Table 4: Correlation between dynamic choices and state variables

Dependent var. In(R;;) In(1 4 x;4) In(a;i+1)
model data model data model data
In(a;) -0.318***  -0.163*** 0.216***  0.219***  0.914***  (0.954***
(0.002) (0.002) (0.003) (0.003) (0.001) (0.003)
In(¢ir) 0.824***  (0.648***  (0.242***  0.0829***  (0.294***  (0.0244***
(0.001) (0.003) (0.0027)  (0.0028)  (0.0018)  (0.0013)
N 85268 85268 63989 63989 63989 63989
R? 0.818 0.705 0.309 0.119 0.966 0.911

Note: Standard errors are in parentheses; *** p < 0.01.

Notice that our model permits a possible negative relation between productivity and MRPK as
n differs. The first implication is drawn from the static problem given the estimated parameters.
Ceteris paribus, the estimated model predicts that richer producers are less likely to be financially
constrained. More productive producers tend to be more financially constrained conditional on their
net worth. In the second of Table 4, I do find such correlation patterns in the data. In the data, the
partial correlation between In(a;;) and In(R;;) is —0.163, and the partial correlation between In(¢;;)
and In(R;;) is 0.648. This is close to what's being implied by the model.

Figure 6 illustrates the R&D decision and net-worth accumulation decision. The left panel depicts
the optimal R&D investment. Conditional on current net worth, firms with higher productivity tend
to invest in R&D investment, but less productive firms choose not to invest in R&D investment. When
I fix the level of productivity, wealthier firms tend to invest more in R&D investment. Because in our
model R&D can only be financed through internal cash flow,'® the R&D investment is likely to be

17See Appendix D for the details.
18In the model, the firm’s cash flow includes internal profits and interest payments from holding the one-period financial
asset.
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Figure 6: Optimal choices of R&D and net worth accumulation
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constrained by the available financial resources. In other words, firms are going to invest more in
R&D investment as they receive more funds. Given that firms are financially constraint, increase
the firm’s net worth will have a positive impact on firm’s R&D investment. Therefore, the model
predicts a positive correlation between R&D investment and productivity as well as net worth. The
right panel describes the optimal decision of wealth accumulation. Conditional on current net worth,
firms of higher productivity tend to save more, anticipating that they are likely to be constrained
in the future. In comparison, firms with lower productivity tend to spend more in current period.
Conditional on productivity, poorer firms save more to increase its net worth in the future. The
binding financial constraint increases the marginal benefits of saving, hence giving firms stronger
incentives to accumulate its wealth and escape from the financial constraint.

These results are different from existing theoretical R&D models with financial constraint being
absent. These model are silent about the relation between firm’s wealth and R&D investment (for
example, see Aw et al. (2011), Doraszelski and Jaumandreu (2013) and Eaton and Kortum (2007)). In
the middle two columns of Table 4, I present the results for the correlation between R&D investment
and state variables. The partial correlation between In(a;) and In(1+x,) stays close to the model. This
suggests that firms may face certain level of financial constraint in undertaking R&D investment.'’
Conditional on the net worth, I also see a positive partial correlation between R&D investment and
productivity. This confirms that more productive firms tend to undertake more R&D investment.
This mechanic relation is modelled in many R&D investment models. Note that the correlation coef-
ficient is weaker in the data, which may suggest that the costs of R&D investment may be positively

19 Another possible explanation is the cost heterogeneity, which is abstracted in our benchmark model. I have also tried to
control firm fixed effects, this positive correlation remain stable.
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correlated with the productivity. Currently this is not formally modelled. In our model, productivity
and wealth jointly determine the financial status of a firm, which further influences a firm’s R&D
decision. To some extent, the positive relation between R&D and net worth also provides indirect
evidence that financial constraint matters for R&D investment.

The decision rule of future net worth accumulation is shown in the last two columns. The model
predicts quite well in terms of the correlation between future net worth and current net worth. This
partial correlation in the data is estimated to be 0.954, and the model predicts it to be 0.914. The
correlation between future net worth and current productivity is relatively lower in the data. This
may imply that there are other unobserved factors affecting the accumulation of assets.

4 Quantitative Analysis

In this section, I present the results of quantitative analysis based on the estimated model. Within
the sample, I first show the static and dynamic TFP losses caused by financial constraints. To better
understand the impact of financial constraint on productivity dynamics, I also simulate the model
forward to evaluate the transition dynamics and the productivity loss in the steady state. In order
to understand the role of R&D investment and endogenous productivity in determining the relation
between financial constraints and TFP, I compare the results with that of the exogenous productivity
model. Lastly, I perform several policy analyses based on the quantitative model.

4.1 Aggregate TFP losses caused by financial constraints

I set year 2008 as the initial period and treat the productivity and net worth recorded in the data
as fundamentals. Using the estimated model, I simulate the model forward for 3 periods. Given
the simulated state variables a; and ¢;, I calculate the actual aggregate TFP based on (25) and the
efficient aggregate productivity using (26) after removing the capital misallocation. A larger value of
0 translates into a less tightening borrowing constraint. To investigate the impact of finance on TFP
losses, I choose different values for 6 and simulate the model to obtain their counterfactual TF PQ*
and other interested outcomes. I then compute the static and dynamic aggregate productivity losses
employing Equation (28).

The results of aggregate productivity losses are reported in Table 5. In the estimated models,
the exogenous productivity model and the endogenous productivity model predict a similar size of
productivity loss from capital misallocation within the length of sample. The average productivity
loss from capital misallocation is 37%. But in the model with R&D investment and endogenous
productivity, the additional TFP loss from under investment in R&D is around 29%. This implies
that productivity loss from the R&D channel is quantitatively important. The impact of finance on
aggregate TFP will almost double as I consider the endogenous response of R&D investment. The
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Table 5: Dynamic and static TFP losses caused by financial constraint

Value of § TFP losses Year Average
2009 2010 2011

Statices 037 037 038 0.37
0.304 Staticey, 037 037 038 0.37
: Dynamic 022 031 035 0.29
Total 059 0.68 0.72 0.66
Staticey 036 035 036 0.36
05 Staticey, 036 036 036 0.36
: Dynamic 021 030 033 0.28
Total 056 0.65 0.69 0.63
Statices 034 033 033 0.33
0.7 Staticer, 034 033 032 0.33
Dynamic 019 027 030 0.25
Total 052 0.60 0.62 0.58
Statice, 028 026 0.26 0.27
0.9 Staticer, 029 027 026 0.27
Dynamic 015 020 022 0.19
Total 043 047 048 0.46

Note: Statice and Staticen represent the static productivity loss pre-
dicted by the exogenous productivity model and endogenous productivity
model, respectively.

dynamic productivity loss starts at 0.22 in year 2009 and grows to be 0.35 in year 2011. This is because
the dynamic TFP loss not only reflects current R&D effort but also past R&D activities. As I increase
6, both the static productivity loss and dynamic productivity loss decreases. When 6 = 0.9, the total
TFP loss predicted by the endogenous productivity model is 46%, with the static productivity loss
being 27% and dynamic loss being 19%. In the estimated model, both the dynamic loss and static
productivity loss are relatively stable when the improvement of financial institution is mild. When 6
becomes larger, the decrease in TFP loss is more sensitive to the increase in 6. This is because more
firms with relatively high productivity get ride of financial constraints.

To further explore the aggregate implications of better financial institutions, I present a summary
of other outcome variables in Table 6. To save space, I display the average values of different variables
over three years. Both the static loss and dynamic loss are associated with the fraction of constrained
firms. In the benchmark model, 44% of the firms are constrained. When I increase 6 to be 0.9, only 28%
of firms are constrained. The dynamic productivity loss is caused by the decrease in R&D investment.
In the estimated model, the fraction of firms undertaking R&D investment is around 11%, while in
the non-constrained model 79% of the firms choose to invest in R&D. Not only the extensive margin
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Table 6: Aggregate implications of financial constraint: Other outcome variables

Valueof & 0324 05 0.7 09 1.0

¢ 044 041 037 028 0.0
Pr(R&D*) 011 015 022 041 0.79
log(R&D') 034 042 066 105 292
log(7) 459 479 507 564 1596
log(e) 087 101 127 192 10.06

Note: Pr(RD?) means the share of firms undertaking R&D

investment. log(R&D+) is the log of average R&D investment
for firms with positive R&D investment.

matters for the dynamic loss, the intensive margin of R&D investment also plays a role in affecting the
productivity evolution. Focusing on the firms with positive R&D investment, I see the average R&D
investment increases as I increase . In particular, the log of average R&D investment (for positive-
R&D firms) jumps from 0.34 in the estimated model to 1.05 when ¢ = 0.9. In the absence of financial
frictions, this number in enlarged to be 2.92. Lastly, financial frictions also cause substantial losses in

output and consumption.

4.2 Transition dynamics of TFP losses

Existing studies have emphasized the importance of technology adoption in the evaluation of the
impact of financial frictions on aggregate TFP (Midrigan and Xu, 2014; Restuccia and Rogerson, 2017;
Vereshchagina, 2018), but much less is known about the transition dynamics of the TFP losses from
the static and dynamic channels. It is interesting to see how the self-financing can undo financial
constraints along the transition. Specifically, how will the incentives to perform R&D activities will
alter the efficacy of self-financing? To answers these questions, I examine the impact of financial
constraints on productivity dynamics and aggregate variables. Given firms’ initial states observed in
2008, I simulate the model forward for 50 years and compute the interested variables.

I present the results in Figure 7. Panel A shows the transition dynamics of aggregate TFP. For the
endogenous productivity model, I am interested three levels of aggregate efficiency: actual aggregate
TFP (tfpgen), aggregate TFP with efficient capital allocation (¢ fpqS,,), and the first-best TFP (¢ fpgy,).
As time evolves, tfpge, increases steadily with a growth rate higher than ¢fpg.,. This is driven by
two forces: first, a reduction in capital misallocation because of wealth accumulation. Second, the
investment in R&D activities drives up the fundamental productivity. In the world where the capital
constraint is absent, the fundamental productivity is also increasing over time as firm’s R&D efforts
continuously contribute to the productivity growth. The fundamental aggregate TFP is a key feature
of endogenous productivity process. As I observe in the Panel A of Figure 7, the efficient productivity
tfpqs, is stable over time. This implies that firm’s ability of earning profits and demand of external
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Figure 7: Transition dynamics of the financial constraint
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Note: Labels with ‘en’ represent the model with endogenous productivity, labels with ‘ex” denote the model
with exogenous productivity. The model simulation starts at year 2008. To focus on the transition path and
the impact of initial conditions, I drop the first five years. I normalize all the aggregate TFP using the initial
level of ¢ fpqt,,.

financing are unchanged over time. As firms accumulate wealth, the actual aggregate TFP (¢ fpge,)
also increases because of a lower degree of capital misallocation.

Panel B shows the transition dynamics of TFP losses. In the exogenous productivity model, the
only TFP loss is the static loss caused by capital misallocation. Over time, some firms can overcome
the financial constraint through self-financing. This results in a reallocation of capital towards more
productive firms and an improvement in the aggregate TFP. This mechanism is also important in ex-
plaining the pattern observed in the endogenous productivity model in which I also see a decreasing
trend of TFP loss from capital misallocation. The interesting finding is that the transitional speed is
slower in the endogenous model. The endogenous growth of fundamental productivity counteracts

the potency of self-financing in undoing financial constraints. Two competing forces are at work.
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As firms become more productive, they earn more profits. This may relax the firm’s financial con-
straints. On the other hand, more productive firms need a larger amount of external financing, which
may exacerbate the financial constraint. However, the model with exogenous productivity fails to
provide a framework for analyzing the dynamic interaction between financial constraints and pro-
ductivity changes. The estimated model shows the second force dominates. This is supported by
Panel C which shows that firms in the exogenous productivity model has a faster speed of escaping
from financial constraint.

More importantly, I find a non-monotone trend of the dynamic TFP loss as time evolves. The
dynamic productivity loss increases first and declines afterwards. This is mainly caused by the gap
in R&D investment between the estimated model and the counterfactual case where § = 1. This is
depicted in Panel D. At the beginning, the gap in R&D investment between these two scenarios is
large both for the extensive margin and intensive margins. Because the difference in current produc-
tivity reflects all of the past R&D activities, the dynamic TFP loss increases as the differences in R&D
investment pile up. As firms accumulate wealth, they catch up by investing more in R&D. This is
especially effective at the extensive margin. As more firms are undertaking R&D investment, the loss
in R&D investment shrinks. On the other hand, R&D activities in more distant history tend to be less
important for current productivity due to a discounting factor. At the beginning, the dynamic TFP
loss actually dominates the evolution of the total productivity loss along the transition path. As a
result, the total TFP loss also increases first and then declines. This indicates that endogenous R&D
investment matters for the understanding of transition dynamics of TFP losses. Because endogenous
productivity growth, the ability of self-financing in easing firms’ financial constraints is weaker.

Figure 8: Characteristics of constrained firms vs. unconstrained
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As a supporting evidence for our discussion above, lastly I show the characteristics of constrained
firms and unconstrained firms of the endogenous productivity model in Figure 8. The constrained
(unconstrained) firms refer to those firms whose capital constraints are (not) binding. Panel A shows
the mean of logged productivity for the constrained and unconstrained firms. Over time, relatively
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more productive firms are constrained, indicating that more productive firms are more difficult to get
rid of the financial constraint through self-financing. On the other hand, relatively poorer firms are
constrained, but the gap between the unconstrained firms and constrained firms are narrowed over
time. This is mainly because firms who are more financially constrained have stronger incentives to
save in order to grow out of the financial constraint. With the endogenous R&D investment, a firm
compares the benefits of improving its future productivity with increasing future net worth. The
trade-off between R&D investment and net worth accumulation makes it harder for the productive

firms to escape from the financial constraint.

4.3 TFP losses in the steady state

After examining the implication of R&D investment for the transition dynamics of aggregate TFD, I
now investigate how R&D investment determines aggregate outcomes in the steady state. In Figure
9, I show that the joint distribution of (a, ¢) converges to a stationary distribution. With R&D invest-
ment, firms are able to improve its productivity, produce more goods, and make more profits. This in
turn allows firms to accumulate more wealth. Despite the model are calibrated using the same data,
the endogenous productivity model features a richer and more productive economy in the stationary
equilibrium.

In Table 7, I show these interested indicators.?? The first indicator I am interested is the fraction
of constrained firms, denoted by (. Recall that in our model with static capital investment decision,
( is also the average cash flow-investment sensitivity. With the option of R&D investment, relatively
more firms are constrained. Accordingly, I observe a larger static aggregate TFP loss (18.4%) in the
endogenous productivity model than in the model with exogenous productivity (16.7%). In contrast,
the aggregate TFP is much higher in the model with endogenous R&D investment. This implies that
the main difference in the aggregate efficiency is driven by a difference in the fundamental productiv-
ity distribution. Most importantly, in the steady state I still see a substantial dynamic TFP loss, which
accounts for 20% of the efficient aggregate TFP. In the last two columns, I present the absolute changes
in aggregate TFP loss comparing to the within sample analysis. In the exogenous productivity model,
the improvement in aggregate production efficiency is solely driven by a more efficient allocation of
capital. With R&D investment, there is also a substantial decrease in the static TFP loss. But the ab-
solute change is smaller than that observed in exogenous productivity model. This is because R&D
investment drives up productivity and leads to relatively more constrained firms eventually in the
steady state.

I also observe a decline in dynamic TFP loss (around 9%) in the steady state compared to the
initial periods of the sample. The reason is that the accumulation of net worth allows some firms

to overcome the capital constraint and undertake more R&D investment. However, because of a

20These variables are the averaged outcome of the last ten periods of the simulation.
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Figure 9: Transition of state variables to the steady state
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Note: In all panels, solid (dotted) lines represent the endogenous (exogenous) produc-
tivity model. For Panel A and Panel B, blue (red) lines represent the mean (standard
deviation) of the interested variable.Starting for the initial period of the sample, I sim-

ulate the model for 200 periods.

persistent effect of R&D on a firm’s productivity, the decrease in dynamic TFP loss is only .09, which
is less than the half of the reduction in static TFP loss. In summary, the endogenous R&D investment
affects the productivity dynamics in two ways. First, the endogenous productivity growth makes the
static productivity loss more persistent over time. Second, the enduring impact of R&D investment
on productivity greatly weakens the efficacy of self-financing in reducing dynamic productivity loss.

I conclude by connecting our findings to an insightful study by Moll (2014) on the the role of
self-financing in undoing financial constraints. Using a tractable dynamic general equilibrium model
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Table 7: Characteristics of the steady state

Indicators ¢ tfpg TFP losses ATEFP losses
Static  Dynamic  Static Dynamic
Exogenous productivity  0.13  3.86 0.167 0.00 -0.21 0

Endogenous productivity  0.15 4.17 0.184 0.20 -0.19 -0.09

in which heterogeneity entrepreneurs face collateral constraints, Moll shows that the persistence of
idiosyncratic productivity shocks determines both the size of steady-state TFP losses and the speed
of transitions. When shocks are persistent, steady-state TFP losses are small but transition to the
steady state takes a long time. The mechanism is producers are more able to accumulate wealth
through saving when the productivity shocks are more correlated over time. This provides a good
benchmark in understand our results. Since R&D investment enters into the productivity process,
the productivity process in our model features an endogenous persistence of productivity. The auto-
correlation of productivity depends on the state variables. In particular, the persistence of produc-
tivity is corr(In(di+1), In(¢r)) = p + yeorr(In(¢y), In(z,(ar, ¢1)). The endogenous component of the
productivity persistence is determined by the correlation between current productivity and Ré&D in-
vestment. When the correlation is positive, model with endogenous R&D investment has a larger
productivity persistence. Using the argument by Moll (2014), I immediately know that this will pro-
long the transition and reduce the static TFP loss in the steady state. In this case, how come I find a
larger static TFP loss in the endogenous productivity model?

The analysis above has ignored the level effect of R&D investment. By diverting some economic
resources to innovation investment, producers also enhance their fundamental productivity over
time. This weakens the efficacy of self-financing along the transition as productive firms require
more external financing. Even though firms can partly undo the TFP loss through self-financing
along the transition, the steady-state TFP loss is larger in the endogenous productivity model be-
cause the fundamental productivity is higher. Introducing endogenous R&D investment triggers a
race between the accumulation of assets and productivity growth. The TFP loss along transition and
in the steady-state is determined by relative speed of wealth accumulation and productivity enhanc-
ing. Our empirical models shows that the productivity-enhancing channel wins the race and causes

a large TFP loss during the transition and in the steady state.

4.4 Policy analysis
4.4.1 Financial policy

I conduct two counterfactual experiments to analyze two kinds of financial policy. First, ask how
incorporating R&D investment affects the policy implication of a financial reform. I then employ the
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estimated model to analyze consequences of a credit crunch for both the endogenous productivity

model and the exogenous productivity model.

Financial reform A financial reform is an action that improves the efficiency of financial system
permanently. I study this financial reform by enlarging 6 perpetually at some time and keep track of
the evolution of interested variables.?! To understand the role of R&D investment, I perform the same
experiment for both of the endogenous productivity and exogenous productivity models. I simulate
the model starting from year 2008 and introduce the financial reform at the fifth year.”? I entertain

with two values of §: 0.5 and 0.7, indicating different levels of financial deepening.

Figure 10: Effects of financial reform

02 Panel A: Aggregate TFP Panel B: Output
1
015
08
= =
£ 04 206
< 4 9=0.5
04
0.05
02
0 0
5 10 15 20 5 10 15 20
time time
Panel C: Fraction of constrained Panel D: R&D investment
0 035 o: intensive margin
: x: extensive margin
= € 03
B 0021 e 6=0.5 g
[= T
g 5 0.25
@ 004 g 02
s £
e} 3015
L 006 x
< < 01
-0.08 - 0.05
0
5 10 15 20 5 10 15 20
time time

Note: In Panels A, B, and C, dotted lines denote the exogenous productivity model while solid lines represent the
endogenous productivity model with R&D investment.

The results of this counterfactual exercise are presented in Figure 10. Panel A shows the response
of aggregate TFP upon the initiation of financial reform. The aggregate TFP increases immediately

2L A larger 0 may reflect the improvement in monitoring technology which increases the cost of defaulting.
220ne can also introduce the policy shock at the steady state. In our case, I find qualitatively similar results. To save space, I
only present the results of introducing the financial reform at non steady-state equilibrium.
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because of the reduction in capital misallocation as more financial resources are allocated to more
productive firms. In the year of starting the financial reform, the increase of ¢ fpg is almost the same
for the exogenous productivity model and endogenous productivity model. No matter whether the
productivity is exogenous, a deeper financial reform leads to a larger increase in the aggregate TFP.
However, one year after the financial reform, with the endogenous R&D investment the aggregate
TFP grows more than that of the model with exogenous productivity. This pattern persists afterwards.
The change in output display a similar trend, showing that the aggregate output is co-moving with
the aggregate TFP in the same direction.

The financial reform also decreases the level of financial constraint. Panel C shows the the change
in ¢. Improving the financial system to be § = 0.5, the percentage of constrained firms drops about 2%
(in levels) in the first year. If I change 6 to be 0.7, { turns to be around 6% (in levels) lower in the first
period. As time moves forward, the speed of decline in the exogenous productivity model is slightly
slower than the endogenous productivity model with R&D investment. In the model, ¢ can also be
interpreted as the investment-cash flow sensitivity. Recall that the degree of capital misallocation is
positively related to €. I can also infer that the capital misallocation decreases less in the endogenous
productivity model. In Panel D, I show the change in R&D investment at both the extensive margin
and intensive margins in response to the financial reform. At both margins, I see an increase in R&D
investment. The increase in R&D investment shift the fundamental productivity distribution to the
right and hence pushes up the aggregate TFP. This explains the gains in aggregate TFP is larger in the
endogenous productivity model even though the reduction in misallocation is relatively less.

The innovation incentive amplifies the impact of the financial reform on aggregate TFP and aggre-
gate output. Because the growth of fundamental productivity, firms need more external finance for
physical capital investment. This in turn may exacerbate the firm’s financial constraint. Empirically,
this could be tested investigated by comparing the response of productivity and financial constraint
to the financial reform for countries (or industries) with different levels of R&D intensity. For coun-
tries (or industries) that are more innovative, I expect that the productivity growth is higher while the
reduction in financial constraint is lower. Due to data constraint, I do not provide formal empirical
tests here. I think this is an interesting empirical question to be studied in the future.

Credit crunch A credit crunch is a tightening of credit supply, which is reflected by a decrease
in §. When a credit crunch hits the economy, I see a decrease in aggregate TFP and output.?®> In
the same time, relatively more firms are being constrained. In the model with R&D investment,
the recover from a credit crunch is slower and the credit crunch has a long-lasting negative impact
on the economy (see Panel A and Panel B in Figure 11). This is mainly because of the decrease of
R&D investment which reduces the firm’s individual productivity.?* The effect of the plummeted

2 Experiments at the steady state generate a similar result, except that the transition back to the steady state is faster.
24 As supporting evidence, global R&D has experienced strong decline during the financial crisis between 2008 and 2009
(OECD, 2009)
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Figure 11: Recover from a credit crunch
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Note: the shock of credit crunch is introduced in period 1.

R&D investment continuously lower the aggregate productivity and output. Therefore, the R&D
investment not only amplifies the gains from financial reform, but also magnifies the losses from
a credit crunch. Considering the response of R&D investment in the evaluation of such policies is

important for evaluating the consequence of financial crisis.

44.2 Pledgeability of intangible assets

Lastly, I investigate the impact of polices that promote the market of intellectually property rights.
To separate the effect of financial reform (a larger ¢) from these polices, I fix § and focus on the

counterfactual analysis of a change in 7.

Values of 7 and R&D investment In the model, R&D investment also contributes to the amount

of pledged assets which helps reduce the financial constraints. It is interesting to see how the level
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of pledgeability of intangibles affects the firm’s choice of R&D investment. A larger n implies that
the pledgeable intangible assets increase dis-proportionally more for relatively more productivity
firms, which, on average, makes intangible collateral more important in financing firms.2> In the
parameterized model, the ratio of intangibles to tangibles in the collateral constraint is 2.54%.2° This
number is relatively small compared to US. Loumioti (2012) finds that using intangible as collateral
increases loan size by approximately 18%. This implies the value of ;) to be 1.579. I show the relation
between M RPK and productivity in Figure 12. In the left panel, I show the case when firms have
low level of net worth. In this case, the cut-off productivity above which firms are constrained are
relatively low. For these constrained firms, increasing 7 slightly decreases the amount of pledgeable
intangible assets. This increases the shadow prices of capital, rendering these firms more likely to
be financially constrained. However, as firms get more productive, a larger 7 means more intangible
collateral is available to the firms when obtaining external financing. For richer firms that have high
net worth, the cut-off productivity above which firms face financial constraint is high. As a result, a
larger 7 leads to a lower M RPK for the constrained firms. Because firms with high productivity and
low net worth are easier to be financially constrained, a larger 7 will relieve their financial constraints

relatively more.

Figure 12: Values of 7 and MRPK
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Table 8 shows a comparison between China of US in terms of TFP losses and R&D participation.
When we improve the collateralization of intangibles in China to be as US, both the static TFP loss
and the dynamic TFP loss decrease. However, the dynamic TFP loss declines (from 29.1% to 22.0%)
more than the static TFP loss (from 37.3% to 36.9%). This is because the endogenous response of R&D

%5Gee Appendix B for the micro-foundation for the relation between 7 and the potential of using intangible assets as the
collateral.
26This ratio is calculated as the average of 6¢?t /a;i by pooling all firms together.
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investment when increasing the pledgeability of intangibles. At the extensive margin, the percentage
of firms undertaking R&D investment increases from 10.6% to 19.7%. As more firms undertake R&D
investment, the dynamic TFP loss decreases. The relative mild decrease in static TFP losses implies
that policies aimed at increasing the usage of intangible assets as collateral may be more effective in

increasing TFP through stimulating R&D investment.

Table 8: Relation between 7 and R&D investment

TFP losses: R&D investment:
Country n static  dynamic Pr(R&D™) log(R&D+)
China 0512 0373  0.291 0.106 0.341
uUs 1.579 0.369  0.220 0.197 0.311

In what follows I provide reduce-form evidence supporting the counterfactual outcome. I first
introduce the policy background of the intellectual property mortgage financing in China, then I
present the related data and empirical results.

Policy background Intellectual property mortgage financing refers to an enterprise or individual
using the legally owned property right of patent right, trademark right and copyright to apply for fi-
nancing from banks. Using intellectual property rights as collateral is common in developed countries
like United States and many European countries. For example, in 2013, 38% of US patenting firms
had once pledged patents as collateral to obtain external financing (Mann, 2018). In China, partly
due to the lack of protection on intellectual property rights, intellectual property mortgage financing
in only at the beginning stage. In 2006, Chinese government has chosen three pilot regions (Pudong
District of Shanghai, Beijing, and Wuhan) to launch the intellectual property pledge financing. After
three years of trial, the State Intellectual Property Office of China (SIPO)* decided to promote and
deepen this practice across the country. In 2009, SIPO launched two groups of pilot units for support-
ing intellectual property mortgage financing. The pilot units include intellectual property offices of
12 cities and/or regions. Their main task is to reduce the costs for firms using intellectual property
financing. In employ this policy shock happened in 2009 to investigate the impact of pledgeability of
intellectual property rights on R&D investment.

City-level data To verify the effects of this policy, | have manually collected the contracts of pledged
patents between 2008 and 2011 from the website of SIPO.?® The records include a identifier for each
patent, the date, the name of the pledger, the name of the pledgee, and the period of validity. I have
identified the city of each patent holder for all of the pledged patents included in the database. This

2’Now renamed as China National Intellectual Property Administration (CNIPA).
28The website address is http: //www.sipo.gov.cn/t jxx/zlgzyhtdixgxx/.
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gives us information on the total number of pledged patents in different regions. In the graph below,
I'show the trends of average number of pledged patents for the treated cities and control cities. I can
see that the average number of pledged patents for the treated cities had experienced rapid growth
since 2008, climbing from close to zero to be over 30 in 2011. In contrast, the growth of the number
of pledged patents in the control city is much slower, remaining to be under 10 in 2011. This graphic
evidence support that these pilot regions did encourage firms to use patents as the collateral to access

external financing from banks.

Figure 13: Number of pledged patents for treated and control groups
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To investigate the impact of the increased pledgeability of intellectual properties on the R&D in-
vestment. I have constructed a dataset of city-year level R&D investment. The sample period is
between 2006 and 2011 so that I am able to control for the pre-trend of R&D investment before the
introduction of the policy. The R&D data are from two sources. For years of 2006 and 2007 I have
acquired the R&D data from China Industrial Survey. For years between 2008 and 2011, R&D data
are from China Innovation Survey. Note that our dataset only only contains the R&D expenditure by
firms. But given that firms are the main undertaker of R&D investment, I expect that this will not

overturn our empirical results.

Empirical strategy and results To test whether introducing intellectual property mortgage financ-
ing had stimulated R&D investment, I adopt the Difference-In-Difference (DID) empirical strategy
and specify following econometric model.

RD.; = B + Bitime; X treat. + Y2, + us + e + e (39)

where RD; is the level of R&D investment measured in billions of RMB, time; is a dummy equal to
one for years after 2009 (including 2009), treat. is a dummy indicating the treated cities. I exclude
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Beijing, Shanghai, Wuhan for their early exposure to a similar policy. I define cities belonging to
the same province with the pilot cities as the treated cities. This allows us to capture the potential
spillover and competition effects that will also increase R&D investment by firms in neighboring
cities. By this classification, there are 98 cities out of 344 cities are treated cities in the full sample. Z/,
include other city-year level control variables that may also affect the R&D performance of the city. In
particular, I control for the financial development, trade openness, level of foreign direct investment,
GDP, and GDP per capita. u; and u. represent the time and city fixed effects, respectively. . is the
error term with mean zero.

Table 9: Impact of intellectual property mortgage financing
on R&D investment

Dependent variable: R&D expenditures

(1) 2) ) (4)

timey x treat. 2.254**  0.480** 4.792***  0.642*
(0.563)  (0.166)  (1.247)  (0.326)
z, No Yes No Yes

N 1978 1127 596 371

Note: A full set of city and time fixed effects are controlled
in all of the regressions. Heterosckedaticity-robust standard
errors are in parentheses; *** p < 0.01 * p < 0.1.

The estimation results are reported in Table 9. In columns (1) and (2), I use the full sample of
cities. The coefficient estimate shows that after I control for appropriate city-level factors, on average
the treated cities had experienced 0.48 billion RMB additional increase in R&D investment. The result
is significant at 1% significance level. I have also tried to use the sample of cities which have at least
one pledged patent recorded in the database of pledged patents to form a more reasonable control
group. In this case, I end up with 42 treated cities out of 100 cities. The regression results are reported
in the last two columns of the table. As shown in column (4), I see that the average increase in
R&D investment for the treated cities is 0.64 billion RMB and significant at 10% significance level.
These results show that enhancing the pledgeability of intellectual property had stimulated the R&D
investment by Chinese firms. This is consistent with the implication of the model.

5 Extensions and Robustness

In this section, I discuss several extensions of our model. These extensions aims to provide robustness
checks to our benchmark results. The details on computation are delegated to the appendix.
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5.1 Unobserved heterogeneity in R&D costs

In R&D investment model where the financial market is frictionless, the R&D activities are explained
by the unobserved cost heterogeneity.” In these models, the impact of financial constraint is loaded
to the R&D costs and cannot be separated from other factors. By modeling the financial constraint
directly, our model explicitly provide a quantification of financial factors in affecting the firm’s R&D
investment. In the benchmark model, the cost function of undertaking R&D investment is common
to all firms. In this case, the cost heterogeneity that affects R&D investment is attributed to the firm'’s
financial condition. In other words, I rely on the heterogeneity in net worth and productivity to
explain the R&D investment. This may lead to a bias in appraising the impact of financial constraint
on R&D investment. Think of a firm which has no R&D investment. It could either be high costs of

undertaking R&D or severe financial constraints that prevent them from investing in R&D.

Table 10: Heterogeneity in R&D costs

My af Hd 0d

5597 1793 -2.859  3.642
(0.256) (0.240) (0.547) (0.069)

Note: Standard errors are in the parenthesis.

To account for the cost heterogeneity in R&D investment, I introduce randomness to the cost func-
tion parameters. In particular, I assume f and d follow independent joint log-normal distributions:
In f ~ N(uy, a}), Ind ~ N(pq, 0%).%° To reduce the computation burden, I discretize the normal distri-
butions and estimate a model with 9 combinations of different values for (f, d). I then apply MCMC
algorithm to obtain the estimates for R&D costs. Computational details are delegated to Appendix F.
Table 10 shows the estimation results. The estimated Ré&D costs display certain degree of dispersion.
Especially for the variable cost parameter d, the standard deviation is larger than the absolute value
of its mean, implying a normal distribution with heavy tails. In Table 11, I display the results on pro-
ductivity loss with R&D cost heterogeneity. Both of the dynamic loss and static loss are close to the
benchmark model. In particular, I find a slightly larger dynamic productivity loss from distortions to
R&D investment when I introduce the R&D cost heterogeneity to the model. This shows that the cost
heterogeneity is unlikely to undo the productivity loss from financial constraint. On the contrary, it
actually amplified the productivity loss from distortions in R&D investment decision.?!

2For example, see Aw et al. (2011), Peters et al. (2017), and Chen (2019).

307 also considered including a correlation coefficient. The estimation results shows the correlation is close to zero and not
statistically significant.

31Separating the impact of heterogeneity in the fundamental R&D costs and financial constraint will be important for the
future work on quantifying the impact of financial constraint on innovation and TFP.
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Table 11: TFP losses in model extensions

Models static TFP loss  dynamic TFP loss
Benchmark 0.37 0.29
Heterogeneity in R&D costs 0.39 0.36
. . high-tech 0.36 0.30
Industrial heterogeneity low-tech 0.38 033
Endogenous uncertainty 0.37 0.30

5.2 Sectoral heterogeneity in innovation technology

In the baseline estimation, I impose a common cost-benefits structure of the R&D investment for all
the industries. However, the participation in R&D activities differ across industries. It is documented
that different industries may have different costs and benefits of innovation (Peters, Roberts and
Vuong, 2016). To examine the impact of heterogeneity, I classify the industries into high-tech and
low-tech industries based on the 2002 Catalogue of High-tech Industry Statistics developed by the
China National Bureau of Statistics.*? According to this classification, in the sample 56 out of 639
four-digit industries are high-tech. High-tech firms perform better in participating R&D investment.
In the dataset, 43.4% of high-tech firms engage in R&D activities while 16.8% of non-high-tech firms
undertake R&D investment. The R&D intensity (R&D-to-sales ratio) also differs between the high-
tech industry and the low-tech industry. The low-tech industry has an R&D intensity of 0.5% while
the high-tech industry 1.8%. I can expect that the participation in R&D activities is an outcome of
differences in costs and benefits of R&D investment.

5.2.1 Estimation by high-tech and low-tech industries

To understand the importance of industrial heterogeneity in affecting the results of our quantitative
analysis, I estimate the empirical model by high-tech and low-tech industries. First, I estimated the
productivity evolution equation separately for high-tech and low-tech industries. The estimation re-
sults are reported in Table E.2. All of the coefficients estimates are significant at 1% significance level.
The productivity do differ across this two groups of industries. The productivity is more persistent
in the high-tech industry while the productivity-R&D elasticity is slightly lower in the high-tech in-
dustry. Moreover, the dispersion of the productivity shocks is larger in the high-tech industry. I
continue to undertake the structural estimation based on the estimated productivity process. The

32The catalogue mainly refers to the methods adopted by the Organization for International Economic Cooperation and
Development (OECD), and adopts relatively high standards according to the R&D intensity of manufacturing industry and
the actual status of development of China’s industry. In the 2002 Catalogue, high-tech industries are divided into 8 major
sectors, covering 59 manufacturing industries and 2 software services.The eight major areas are: nuclear fuel processing, in-
formation chemical manufacturing, pharmaceutical manufacturing, aerospace manufacturing, electronics and communication
equipment manufacturing, electronic computer and office equipment manufacturing, medical equipment and instrumentation
manufacturing, and public software services.
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structural estimation process is the same except that now I separately estimate the R&D costs for
high-tech and low-tech industries. The estimation results are shown in Table 12. I find smaller fixed
costs and marginal costs for R&D investment in the high-tech industries than in low-tech industries.
This suggests that innovative ideas are easier to find and implement in the high-tech industries com-
pared to the low-tech industries. In the high-tech industry, the financial constraint causes a dynamic
productivity loss around 0.30 and a static productivity loss around 0.36, which is very close to the
benchmark results. In the low-tech industry, the productivity losses are slightly higher. This result
is mainly driven by the relatively higher productivity-R&D elasticity in the low-tech sectors. Again,

these results confirms the robustness of our benchmark results.

Table 12: R&D costs parameters for high- and low-tech sectors

Productivity evolution =~ R&D costs
Sectors

p Y e f d

High-Tech 0.384 0.0513 1289 70.14 0.031
Low-Tech 0332 0.0564 1273 11349 0.135

I am also interested in the long-run dynamics of productivity loss. To this end, I also simulate the
model to see the transition dynamics of the share of dynamic productivity loss in total productivity
loss. Both for high-tech industries and low-tech industries, I see a declining trend for the importance
of dynamic productivity loss caused by under investment in R&D. This reflects that the static loss
caused by capital misallocation is declines slower as the wealth accumulates. This is also consis-
tent with our benchmark quantitative results. This shows that our analysis is robust to considering

industrial heterogeneity in R&D costs and benefits.

5.3 Innovation with endogenous uncertainty

Now I examine the robustness of our results when subject to a different innovation technology. In our
benchmark specification, the future productivity is only subject to exogenous productivity shocks.
But innovation is full of uncertainties and risks. To capture the impact of uncertainties underlying in
the innovation process, I extend the formulation of the productivity process specified by Warusaw-
itharana (2015). The productivity improvement is assumed to be step-by-step. Let x;; € {0, 1} be the
random variable representing the innovation outcome, with x;; = 1 meaning the innovation outcome
is successful. x;; follows a binomial distribution with probability of success equal to

Pr(kit = ljzy) =1 —exp (fwxft) (40)
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where 1 is the parameter governing the overall efficiency of R&D investment in increasing the prob-
ability of success, ¥ capturing the curvature of this innovation function. The productivity evolution
equation is specified as

In i1 = pln gy + hiy + pje + Eirgr (41)

where &;;41 ~ N (0, ag) and p;; is the industry-year fixed effects. In addition to the exogenous
productivity shocks, the uncertainty in the innovation outcome is captured by the randomness in
kit- 1 employ the probability density function of ¢;;+; and apply the Maximum Likelihood Estimator
(MLE) to obtain estimates for the associated parameters. Employing these the estimated productivity
process, I then conduct the structural estimation to obtain the R&D costs parameters using the same
structure of R&D costs. Notice that under this productivity process, I do not require a large fixed cost
to capture the extensive margin of R&D investment. Even the coefficient of the variable R&D costs is
much smaller. This is because the productivity process with endogenous uncertainty generates lower
returns to R&D investment. As I show in Appendix E, this cost-benefits structure for R&D investment
entails a negative relation between R&D investment and productivity, which is not consistent with
the data.

Table 13: Parameters for innovation with endogenous uncertainty

Productivity process R&D costs
p o¢ P 9 h | h dy
0.335 1262 0.076 1.080 0573 | 1.9¢7% 1.7¢7°

Nevertheless, the quantitative results show a similar result for the importance of dynamic produc-
tivity losses. In the last row of Table 11, I see that the productivity loss is quite similar to that in the
benchmark model. This shows that the results is robust to alternative modelling of R&D investment.

6 Conclusion

This paper studies a dynamic R&D investment model with financial frictions to help understand the
role of innovation in shaping the link between finance and aggregate TFP dynamics. A parameter-
ized model consistent with important aspects of firm-level decisions on R&D investment and net
worth accumulation shows a sizeable TFP loss caused by distortions of R&D investment and capital
misallocation. As time evolves, self-financing does enable some firms to grow out of their financial
constraints. However, productivity-enhancing innovation investment undermines the efficacy of self-
financing in reducing TFP loss. Dynamic TFP loss is more persistent than the static TFP loss. More
interestingly, the dynamic TFP loss amplifies in the beginning as the effect of R&D investment on
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productivity persists over time. In the long run, the TFP loss generated by distortions of R&D in-
vestment is mainly caused by the intensive margin of R&D investment itself. These results show that
R&D investment not only affects the size of TFP losses due to financial constraints, but it also affects
the transition dynamics of aggregate TFP.

Further counterfactual analysis then shows that innovation investment amplifies the TFP gains
from financial reform and causes a more longer-lasting consequence in terms of a credit crunch. This
finding implies that the benefits of financial reform may be severely under-evaluated if we ignore
R&D investment. The counterfactual with respect to the pledgeability of intangible assets in obtaining
loans shows that improving the tangibility of collateral may be an effective measure in reducing
dynamic TFP loss but has limited impact on static TFP loss; developing countries can increase TFP by
establishing a better market of intellectually property rights.

Because I do not have data on intangible assets, I choose a parsimonious way of modeling the
relationship between pledgeable intangible assets and productivity. The accumulation of intangibles,
though, is an important channel through which R&D investment helps firms to relieve their financial
constraints. Unveiling the function that intangible assets play in reducing firms’ financial constraints

would be an interesting avenue of future study.
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Appendices

A Math Appendix

A.1 Marginal cost of capital

The firm’s optimization problem is

[max {yir — wlip — Tk} (A1)

0777 0

1
where y;; = (¢i:kl;,*)™ and m = -2 is the mark up. Let \;; be the Lagrangian multiplier for the

capital constraint, the first-order conditions are:

11—« 1 lza 1 —a)y
— (Putki) ™ 1y f=w = i = w (A.3)
m mw
a SN SR Yt
. i ll @\ m km = ) )\Z ki = — N A4
m((btzt ) it T 0+ At = Fit ﬁl(/\zf-i-’l”—F(S) ( )
P T S W (A.5)
P19 gt ‘

where the last condition is the complementary slackness condition. Using (A.3) and (A.4) I solve for

the optimal choice of labor and capital:

(1—a)(e—1) 14+a(oc—1)
1 /1-
ki = — [ —— . ¢o 1 (A.6)
me w Nit +r+9
1 1— ato(l—a) a(o—1)
= — (—~ s o5 (A7)
me w Xit +7+0
When ;¢ > 0, I can use the binding capital constraint and (A.6) to solve for the capital prices:
a; 9 'r] 1—-m ﬁ
R(ai, o) = D [@'t (1:9 + 1 (;_%9) ] (A.8)

where

11—«
a (1—q) et
D=— -
m mw

When \;; = 0, the capital price is R (a;, ¢it) =7 + 9.
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A.2 Investment-cashflow sensitivity

Notice in the model the capital investment-cash flow sensitivity is one when a firm is financially
constrained, hence ¢ also represents the average investment-cash flow sensitivity, which was intro-
duced by Fazzari et al. (1988) and has been used extensively in the empirical literature in financial
economics. See appendix for the discussion on the cash flow-investment sensitivity. When the cap-
ital constraint is binding, the capital investment is independent of the cash flow. When the firm is

constrained, the capital investment is given by

. i 1—a (1—-a)(oc—1) a 14+a(oc—1) ¢0-_1
T me w R (ait, ¢it) "

X A (ait, Pitt1)

O1n(kit)

It fOHOWS that €it = m

sensitivity is

= 1. Let P, be the fraction of constrained firms, the average cashflow

G = N Z €; X I(constrained) = P, (A.9)
A.3 Static aggregate TFP loss
A.3.1 Aggregate TFP

I first show that given the distribution of fundamentals (a;, ¢;), the aggregate TFP can be written as

[en B 0570

TFPQ, = = (A.10)
|:J;€N R a(l—o)— 1¢;;-t 1d i|
By the definition of aggregate TFP, we know
TFPQ, = @ _ Qs (A.11)

KeLe™ (ki)™ ([, Ludi)' "

Let’s first look at the aggregate inputs. Using the optimal decisions of capital and labor, I immediately

have
Po 1— (1-a)(o—1) o(l—o)—
K, —/kztdz @ ( 0‘) 1+a<”—1>/Rl (1=o)=1go =14 (A.12)
me w
P - ato(l—a) N o)
L= / lydi = Qt( » ) a®@=1) / RO go—1g; (A.13)
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Moreover, the aggregate industrial output is

Q= ( / qt; dz')“ (A.14)

. 1—a)(o—1 «
_ Py (1 - a>( X )a1+o¢(0—1)‘|
w

e

ato(l—a) 1-o -

() e ]
w

Plugging the expressions of K; and L, into (A.11), canceling the aggregate variables P7(Q); and other
constants, I obtain (A.10).
Now I focus on a specific joint distribution of (a;;, ¢;;) and obtain the estimator for aggregate TFP

loss. In particular, we assume that the net worth a;; and productivity ¢;; follow a joint log normal

)-+(H 2 )
log (¢it) pe || poaos o3

Let G (a, ¢) be the CDF and g (a, ¢) be the PDF, respectively. Define u = log (a) and v = log (¢), then
the density function for (u, v) is

distribution

— 1 z (u,v)
h(u, v) = 27ma%\/meXp {—2 - ﬁz)] (A.15)
where z = (v = pta)” 20 (u— pa) (v = pg) + (v— H¢>)2

o2

2
p 0a0¢ oy

Applying the change of variables theorem for this bi-variate case, I have

g(a, ¢) = éh (log (a) , log (6)) (A.16)

In addition, I normalize that P’ Q; = 1 to simplify our analysis to be on the partial equilibrium. I

define a cut-off function ¢ (a) such that (a, ¢ (a)) solves
R(a, ¢(a)) =r+0 (A.17)

Correspondingly, I define a function @ (u) = log (¢ (e*)) that characterizes the cut-off function on the

space of (u, v). Now I omit the time subscripts for the sake of brevity.

Theorem 1. When the fraction of constrained firms are small, the aggregate TFP can be approximated
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as

(o— 1)0

TFPQ = N#-17, (0)77 ekot

Proof. Applying the Law of Large Numbers, I can express the numerator and denominator of 7F PQ
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Changing the variables to be u and v, the first double integral in the bracket is

o(u)
/ / ele—1) v e e’) dede" = / / (- 1)”h (u, v) dvdu

/ / exp(o—l)v—%)dvdu
0o 27raaa¢\/1— 2(1-p2)
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Integrating from the integral inside, I have
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where @ (-) is the CDF of standard normal distribution andty (u) = (0 — 1) (1 — %) o 340 (u— pa) 2% 2+
te- This implies that
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is used to change the integrand. For the numerator, the second double integral in the bracket is

// qﬁ"flR(a, ¢)a(1—17) d¢da _ // 6(071)UR(GU )a(l o) ( )de“de
é(a) o(w)
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For the denominator, the second double integral in the bracket is
// 67" 1R (a, )" dgda = D7) // ") dH (u,v) (A.18)
é(a)

Therefore I can write down the aggregate TFP as
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where
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when Tiand Y5 are close to zero, I obtain that

(o— 1)0

TFPQ = N7, (0)7T ehot
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A.3.2 Characterization of aggregate TFP loss

The efficient aggregate T'F' P is given by

TFPQ”—( “1m)
1
=N (B(¢71)T
Because ¢, has a log-normal distribution with mean p, and variance o4, I have
-1,

TFPQ® = NoteloDust 5= (A.21)

Consider the case that T; (©) and Y5 (©) are close to zero, I can calculate the log of TFP loss as

TFPQ
TFPlOSS—l—W
— 1T (0)7

Theorem 2. When v (u) is an increasing (decreasing) function of u, the aggregate TFP loss is decreas-
ing (increasing) in (. The aggregate TFP loss is and increasing in p.

Proof. First, note that I can write 9 (uo (v)) as

B0 (uo (y)) = poay + (0 = 1) (1 = p*) 05 + p (0 — 1) 05 + g,
which is independent of y,. The derivative of T (©) with respect to p, is
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/ \/27raa V31— p%0,

v (uo (y)) S 0

Following a similar logic, I know that

2

G 2,

8u¢ /\/%Ua \/1—ﬁ20¢

dy <0

53



B Theory Appendix

Here I provide a micro foundation for the functional form chosen in our benchmark model. Let
VP (a, ¢) be the value function when the firm defaults and V" (a, ¢) be the value function when the

firm does not default. When not defaulting, the value function is given by

1—e¢

V¥(a,¢) = V(a,¢) = max { )

— 6EV<a’,¢'>} (B.1)

subject to the constraint:

c+k'+(1+r)b+ﬂ(x)f+gx2:y—wl+(1—5)k—|—b’

where b is the amount of debt in the next period, and %’ is the physical capital in the next period. By
definition, I always have a = k£ — b. Because of limited enforcement of contracts, a firm can default
on a fraction of the face value of current debt. Therefore the firm only needs to pay (1 + r — )b
to the bank. The cost of defaulting is a fraction of collateral used when borrowing from the bank:
p1(l — 0)k + p2¥(¢). In other words, the bank can seize a fraction of the capital and the value of
intangible assets when the firm defaults. The firms are assumed to be only defaulting for one period

and have access to the financial market next period. This implies that V' ?(a, ¢) can be expressed as:

VP(a,$) = max {lcl + ﬁEV(a’,gb’)} (B2)

b kK @ —€

subject to the constraint:

d
c—l—k/—k(1+T—Mo)b+u1(1—(5)k—|—,u2\11(¢)+]I(x)f+§x2=y—wl+(1—5)k+b’

The condition for an equilibrium in which no firm defaults is

VP(a,¢) <V¥(a,9)
= (14+7m)b<(1+7—po)b+pi(1—0)k+ pu2¥(e)

This immediately implies that

b< Bk P2y (B.3)
Ho Ho

Lastly, I determine the functional form of the value of intangible asset as follows. I assume that the
productivity can be decomposed into organization capital (¢' ") and intangible assets (¢”), where
1 > v > 0. The organization capital is not pledgeable while the intangible assets can be used as a

collateral when the firm borrows from the financial institutions. The intangible assets can only be
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used by a potential manufacturer with organization capital greater than ¢!~ and generate profits of
x¢°~*. Furthermore, the distribution of the organization capital follows a Pareto distribution with
lower bound ¢ (¢'~" > ¢) and shape parameter m. Therefore, with probability (¢'~*/¢)~™. This
implies that the value of pledged intangible asset is

\I]((b) — X?m¢o—m(l—y)—l (B4)

Define n = m(v — 1) + 0 — 1 and 6 = p1/po. Moreover, if I impose that x¢™ = 1, I obtain the
specification used in our benchmark model. Note that in addition to financial friction, m also captures
the efficiency of the market for intellectual property rights including patents and trademarks. A
smaller m means that banks can sell the pledged intellectual property rights to a productive potential

buyer more easily.

C Characterization of the Steady State

In this section, I provide a characterization of the steady state of the model. According to our ag-
gregation of the economy, aggregate outcomes are determined by the joint distribution of the state
variables (a;, ¢;). Note that in the endogenous productivity model, the evolution of net worth and
productivity is summarized by a non-linear first-order stochastic differential equation:

air1 = a'(ag, ¢y) (C1)
br+1 = pde +yIn(z(ar, ¢t) + 1) + g1, (C2)
where a'(at, ¢;) is the decision rule of the accumulation of future net worth, z(a;, ¢;) is the optimal

choice of R&D investment. This non-linear vector auto-regressive model can be approximated by follow-
ing first-order linear vector auto-regressive model:

©) bii b 0
Q41 _ a(o) i 11 12 at i (C.3)
De+1 @ bar baa| | i1
————
B
where
[bu b121 _ [ Lég’@ La(;’d)) 1
- dln(z(a,p)+1) dln(z(a,p)+1)
L PETT 00 a=E(a).6=E(¢)

The necessary and sufficient condition ensuring the weak stationarity of this VAR(1) model is the
eigenvalues of B has to be smaller than 1 in modulus.
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D Data

D.1 Panel data of Chinese manufacturing firms

In this subsection, I provide the detailed information on the construction of variables used in the
paper.

Net Worth a;;: Difference between book value of total assets and total liabilities and deflated by
industry output price deflators.

(Net) Debt b;;: Book value of current liabilities minus cash holdings and deflated this difference
with the industry output price deflators. This is a short-term measure of the debt; the model has no
maturity choice.

Capital Stock k;;. Book value of fixed assets and deflated with the price of investment goods.33

Wage Bill w;;. Book value of sum of salary and payments for labor insurance and other benefits
including health insurance, pension insurance, and other insurance.

Labor Input /;;. The firm’s wage bill deflated by the industry price deflator. This measurement
controls for the quality difference of the labor.

Value Added p;;y;;. Book value of the firm’s value added.

Real Output y;;. Nominal value added deflated by an output price deflator.

Marginal Revenue Product of Capital (MRPK) R;;. I follow Hsieh and Klenow (2009) to construct

a—1
the marginal revenue product of capital, which is R;; = oz (’;lt’ ) .

E Supplementary Empirical Results

This section provides supplementary empirical results referred in the main text.

E.1 Productivity and leverage ratio

In this subsection, I provide the supporting evidence for the modelling of productivity as intangible
assets used as collateral. I show that in the data there is a robust positive relation between productiv-
ity and leverage ratio, indicating that productive firms are more able to obtain debt financing.

E.2 Productivity processes for high- and low-tech industries

I show the OLS estimation of the productivity process when estimating separately for high-tech and
low-tech industries. I do find some heterogeneity in the endogenous productivity process. Surpris-
ingly, I find that the productivity growth effect of R&D is larger in low-tech industry. Given that

33In GKKYV, both tangible and intangible fixed assets are included.In our data, I do not observe the firm’s intangible assets. I
use the fixed assets under the tangible assets.
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Table E.1: Determinants of leverage ratio
and R&D investment

Dependent var.: leverage ratio
@ ()
In(¢) 0.562***  0.399%*
(0.092) (0.098)
In(a) -6.926"  -7.254***
(0.181) (0.145)
Controls No Yes
N 87329 87329
R? 0.205 0.272

Note: control variables include firm age, own-
ership, province, year and 3-digit industry fixed
effects. Standard errors are clustered at the city
level. *** indicates significance level at 1% signif-
icance level.

low-tech firms undertake less R&D investment, it must be that the the high costs prevent them from
doing that.

Table E.2: Productivity evolution for high- and low-tech industries

dependent var.: In(¢;+1)

sectors High-Tech Low-Tech
In(¢y) 0.384*** 0.332%**
(0.025) (0.006)
In(z; + 1) 0.051*** 0.056***
(0.004) (0.002)
industry-year FEs  Yes Yes
O¢ 1.289 1.273
N 5136 60843
R? 0.240 0.186
Note: standard errors are heteroscedastic robust. *** p <
0.01
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E.3 R&D with endogenous uncertainty
E.3.1 Maximum-Likelihood Estimator

In particular, the log-likelihood function is given by

LLF = Z log {[1 — exp(—wzﬁ)}g[;(ln(@tﬂ) — pPit — h — pijt)] (E1)

+esp(-vatol - (n(6ien) - poe — 1)

where g(-) is the density function of Standard Normal distribution. The estimates for the associ-
ated parameters are obtained by maximizing the objective log-likelihood function. Table E.3 shows
the estimation results. The persistence of the productivity process is estimated to be 0.335, which is
close to what I obtained using the productivity process with only exogenous productivity shocks.
Also, the dispersion is similar to the estimate used in the benchmark analysis. The average im-
provement of productivity is 0.573. The probability of successful innovation is Pr(k; = 1|zy) =
1 — exp(—0.076x;°8%). All of the coefficient estimates are significant at 1% significance level.

Table E.3: Productivity process with endogenous uncertain innovation outcomes

Parameters P P ) h In(oe¢)
Coefficients  0.335***  0.076*** 1.080*** 0.573*** (.233*** N = 65979
s.e. (0.023)  (0.132)  (0.024)  (0.003)  (0.003) LLF = —109129.8

Note: estimates are obtained using Maximum Likelihood Estimator *** p < 0.01

E.3.2 Optimal R&D policy under endogenous innovation uncertainty

The figure above shows the R&D policy functions when modelling the innovation process with un-
certainty. It is clear that firms with relative lower productivity and smaller net worth choose to invest
in R&D investment. This is inconsistent with the data which shows a positive partial correlation
between R&D investment and net worth, as well as between R&D investment and productivity.

F Computation

This section describes the main computation procedures performed in this paper.
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Figure E.1: Optimal R&D policy: innovation process with uncertainty
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E1 Benchmark model and simulation

Our benchmark model has two continuous state variables and two continuous dynamic choice vari-
ables. Because of the fixed cost, the choice of R&D features kinks in its decision rule. Using traditional
value function iteration method requires a large amount of time to accomplish the computation. In-
stead, I use the collocation method to solve the value function by approximating it as a combination
of known basis functions. After choosing an appropriate grid for the state variables (a, ¢), I use the
alternating search algorithm to solve the bi-variate optimization problem. I find the optimization
method such as Nelder-Mead algorithm and Newton’s iteration method are less efficient than the
alternating search method. By fixing one variable each time, the alternating search method simplifies
the optimization to be a single-variable optimization. The algorithm stops whenever the new optimal
values are close to the values found in the previous round. I also employ the parallel computing in
Matlab to improve the computing efficiency. To avoid the problem of local optimum, I use MCMC
simulations to find the minimizer of the objective GMM estimator as suggested by Chernozhukov

and Hong (2003). The estimation algorithm is as follows:

1. Given a guess of (f, d) and pooled data of net worth and productivity, I solve the value function

and find the optimal decisions of future net worth and R&D investment

2. Construct the objective function using the model generated data on future net worth and R&D

investment for each observation

3. Obtain the Meteropolis-Hastings MCMC chains for parameters using 2000 simulations
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The estimate of (f,d) is the mean of the simulated data. After I parameterize the model, I perform
simulation using the solved policy functions of R&D investment and net worth to generate the path
of productivity and net worth and. Then all relevant variables are computed accordingly.

FE2 Model Extensions
F2.1 Model with R&D costs heterogeneity

I assume that f and d follows a joint log-normal distribution with correlation p.:

2
Infil N[ Hs , Of  Pfaofod
Ind; L Pfaofoq 03

I draw N realizations of f? and dY independently from the standard normal distribution N (0, 1),
putting them aside to construct the R&D costs parameters f; and d;.
Step 1 Using f;’s and d,’s, I construct N realizations for each of In f;* and In d} as

[fi‘ 1 _ | o\ 1= Pia ospsa [f{’]

d; 0 o4 dy

Step 2 For any values of ;1 and pq, I discretize In f;* and Ind} according to the characteristics of
normal distribution, I obtain realizations for each of In f; and In d;:

po o, ifzf >+ %
Inz; =4 u, —o, ifzf <p.— % ;2 €{f, d}

Mz Zz* € [Uz_%vuz+%)

Since I do not find a significant estimate for psq, pyq is imposed to be zero in our preferred estimation.
I then choose a set of values for (uf, 0, ft4,04) to minimize the distance between the model and the
data using the same moments as in the benchmark model. To avoid the local miminum, I follow
Chernozhukov and Hong (2003) to obtain the Metropolis-Hastings MCMC chains using multivariate
Gaussian proposal distribution.
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