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A B S T R A C T

As a developing economy, China's unprecedented patenting surge is puzzling. We study China's patent surge and
its driving forces using a novel and comprehensive merged dataset on patent applications filed by Chinese firms.
We find that R&D investment, FDI, and patent subsidy have different effects on different types of patents. First,
R&D investment has a positive and significant impact on patenting activities for all types of patents under
different model specifications. Second, the stimulating effect of foreign direct investment on patent applications is
only robust for utility model patents and design patents. Third, the patent subsidy only has a positive impact on
design patents. The results imply that FDI and patent subsidy may disproportionately spur low-quality patents.
1. Introduction

The number of patents in China has been exploding in the past three
decades. Since 2011, China has become the world's number one in filing
patent applications. Breaking the patent counts into invention patents,
utility models and designs, this extraordinary growth prevail.1 According
to the National Bureau of Statistics of China, applications for invention
patents had increased from 25,236 in 2000 to 293,066 in 2010, with an
average annual growth rate of 31.17%. Meanwhile, the utility model
(design) patents applications had also risen steadily with a growth rate of
19.86% (24.73%). If different types of patents represent distinct forms of
innovation, patent heterogeneity should be important for understanding
the driving forces behind China's patent surge as well as its policy
implications.

Firms make the patenting decision by analyzing its costs and benefits.
In principle, given the supply of new ideas, anything that affects the costs
or benefits of patenting can influence the patenting outcome. Different
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ideas represent various types of innovation. As pointed out by Nemlioglu
and Mallick (2017), different types of innovation may benefit firms un-
equally. To distinguish ideas by their novelty and applicability, CNIPA
classifies the patents into three categories–invention, utility models, and
designs.2 These three types of patents vary greatly in the length of ex-
amination period, protection period as well as requirements for being
granted. These differences presumably affect the net benefits of patent-
ing, which further influence firms’ incentives for patenting.

Using a novel combined database of Chinese manufacturing firms,
this paper aims to deepen the understanding on Chinese patents growth
by explicitly considering different types of patents separately. Unlike
existing studies, we show that the patent heterogeneity is important in
analyzing the patent surge in China. We apply count data models to deal
with the problem of over-dispersion and excessive zeros in the patent
counts data. Our study documents that factors explaining the patenting
growth vary across different types of patents. The empirical results
robustly show that R&D investment is one of the most important
nstructive comments. We also would like to acknowledge seminar participants at
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3 R&D expenditures are only available for observations no later than 2001,
which restricts the time span of the study to be from 2001 to 2007.
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explanatory factors for all types of patents, but the marginal effect of R&D
differs for different types of patents. Contrasting with Hu and Jefferson
(2009), we find that foreign direct investment (FDI) only helps explain
the creation of utility model and design patents, but not invention pat-
ents. More interestingly, different from Li (2012), our study shows that
patent subsidy only has positive impact on the patent's applications for
designs. These results suggest the non-innovation motives are important
in explaining the patent applications by firms, but their importance de-
pends on the type of patents. This also implies that certain policies tar-
geted at promoting patenting activities may distort firms' incentives and
induce low-quality patents.

Our study relates to several strands of literature. First, it is closely
related to the studies on patent surge in China and other countries. To the
best of our knowledge, Hu and Jefferson (2009) is the first study docu-
ments and analyzes China's patent surge. Using a firm-level dataset that
contains invention patents statistics on large and medium sized industrial
enterprises, they show that R&D only explains a fraction of the explosive
growth of invention patents. They find that FDI, amendments to the
patent law in 2000 and ownership reform have fostered Chinese firms to
file more applications for invention patents. In addition to these factors,
the stimulating effect of patent subsidy programs initiated by Chinese
provincial governments is also documented by Li (2012) and Dang and
Motohashi (2015). A recent study by Hu et al. (2017) shows that R&D has
become less important in explaining the patenting applications. They also
document a weaker correlation between patents and labor productivity.
Put together, these studies suggest that the patent growth in China is not
only driven by the intensification of R&D but also by other
non-innovation motives. Studies on the patent surge in U.S. and Japan
indicate that the impact of strengthened IPR protection on patenting is
limited. Kortum and Lerner (1999) find that the jump in U.S. patenting
between 1985 and 1995 is mainly spurred by the shift in themanagement
of research towards more applied activities but not by the seemingly
pro-patent legislative changes in the 1980s. Similarly, Sakakibara and
Lee (2001) examine the impact of the 1988 Japanese patent law reforms,
and also find no evidence supporting that the expanding of patent pro-
tection increased the R&D spending or patents.

Second, this study is associated with the literature on the techno-
logical effects of FDI. FDI can in-fluence domestic firms through positive
agglomeration effects or negative competition effects (Aitken and Har-
rison, 1999). Since the China's open policy initiated in the 1980s, FDI has
played an import-tent role in stimulating China's economic growth. The
technological spillovers from FDI, however, remains unclear. This is
probably because institutional factors such as the protection of intellec-
tual property rights affect the magnitude of FDI spillovers (Bournakis
et al., 2018). Using a provincial dataset from 1995 to 2000, Cheung and
Lin (2004) find positive impact of FDI on the number of (all types of)
domestic patent applications in China. Using panel data analysis on
Chinese high-tech industries, Liu and Buck (2007) find the sources of
foreign technology spillovers and absorptive ability jointly determine the
R&D performance of domestic firms. Nevertheless, Chen et al. (2018)
show the domestic private investment has become the dominant
contributor to China's technological progress. They notice that the
state-owned investment and FDI actually re-duce the impact of domestic
private investment on stimulating technological advancement. A more
comprehensive evaluation of the FDI spillovers by Lu et al. (2017) reveals
a negative impact of horizontal FDI, i.e., FDI in the same industry, upon
the productivity by Chinese domestic firms. They also find no significant
impact of FDI on spurring new products. We also find that FDI has no
significant impact on the filings of invention patents, suggesting that the
technology spillovers from FDI is limited. Moreover, in our study FDI is
found to have significant and positive effects on the patenting for utility
models and designs. This implies that firms may employ the patenting for
low-quality ideas as a strategic tool to preempt competition from foreign
firms. Policies aiming to promote domestic technological progress
through attracting FDI may have unintended consequences by inducing
firms to produce low-quality patents.
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Lastly, our study connects to the literature on the effectiveness of
patent-related fees in screening patent quality. Patent fees are an essen-
tial element in the design of patent system. A large body of literature has
discussed the use of fees as a policy tool to weed out low-quality patents
(see Caillaud and Duchêne, 2011; De Rassenfosse and Jaffe, 2018; Gans
et al., 2004; Schankerman and Pakes, 1986; Scotchmer, 1999). Our study
fits into this strand of literature by focusing on reductions in patenting
application fees and examination fees caused by provincial innovation
subsidy programs. The empirical results suggest that the decrease in
patenting fees induces more design patents. As we mentioned earlier,
design patents are of the lowest quality among all types of patents. In this
sense, the result suggests that maintaining certain level of patent fees is
necessary for screening out low-quality patents. Moreover, this may also
reflect that the impact of patenting subsidy on stimulating the firm's
innovation is limited. This is probably because patenting fees are small
relative to the expected return from patents granted for inventions and
utility models.

This paper contributes to the existing literature in several aspects.
First, this paper analyzes the patent surge in China by explicitly consid-
ering three types of patents separately. We evaluate a set of factors that
may affect the patenting outcome for different types of patents in China.
This enables us to detect the potentially different driving forces for
different categories of patent that represent different forms of innovation,
thus providing a more complete explanation of Chinese patents growth.
Second, this study also has important implications for innovation pol-
icies. We find that R&D investment, FDI, and patent subsidy play
different roles in spurring different types of patents. For example, if
patent subsidy is only effective for stimulating low-quality patents, sub-
sidizing on the patenting fees may cause a surge in low-quality patents
that harm innovation incentives (Barton, 2000; De Rassenfosse and Jaffe,
2018). Finally, this study also has general implications for researches
using patents to measure innovation activities. In addition to R&D in-
vestment, other factors may also affect the firm's patenting choice. In this
case, using patenting as the measure of innovation regardless of the
institutional setting can be misleading. Moreover, innovation can take
place in different forms. Different innovation outcome has different
market value, using aggregate measures such as R&D investment or the
total number of patents disregard the quality of innovation.

The rest of this paper is organized as follows. We introduce the data
used in this paper in Section 2. In Section 3, we display the descriptive
statistics to motivate the formal econometric analysis on the driving
forces behind patents. Section 4 shows the results in the order of the
sophistication of the econometric models. Section 5 deals with the po-
tential endogeneity problem. In Section 6 we conclude by discussing the
empirical results and relevant policy implications.

2. Data

2.1. Data sources

This paper uses three databases. The first is a database of Chinese
manufacturing firms from 2001 to 2007 compiled by China's National
Bureau of Statistics (NBS). This dataset is widely used in economic
studies focusing on China (see, for example, Hsieh and Klenow, 2009;
Song et al., 2011; Chen et al., 2017). It includes SOEs (State Owned
Enterprises) and non-SOEs with annual sales no less than five million
Renminbi (equivalent to about $700,000). These firms account for 98%
of China's total manufacturing exports. The dataset includes more than
100 financial variables listed in the major accounting sheets of all these
firms. In particular, it contains information on a firm's annual R&D
expenditures.3

This study also uses a patents database provided by the CNIPA. It
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contains information on patent applications that are submitted by firms
in mainland China. For each patent the database has information on its
type (invention, utility model, or design), owner, application time, cer-
tification time, agent of application, abstract, location, and expiration
time. This information essentially allows the researcher to track the
entire life of patents from 1985 to 2012. But it should be noted that we
have no information on patent citations, which makes it difficult to
measure the patents quality directly.4

Different from existing literature, we deal with different patents
separately by assuming independence between different types of pat-
ents.5 This allows us to identify different driving forces behind the surge
in different kinds of patents. For the purpose of this study, we merge this
database with data on Chinese manufacturing firms. The merged dataset
contains the information of aforementioned two datasets. In Panel A of
Table 1, we report the ratio of the number of patents applications of the
merged dataset to the total number patent applications in mainland
China. As we can see, the percentage of the total number of patents that
are merged to the dataset is increasing for invention patents and utility
model patents, decreasing for design patents. This implies that firms have
played a more and more important role in producing high-quality patents
in our sample, which adds to the importance of this study in under-
standing the long-term economic growth driven by Chinese firms. Since
our dataset only covers around 10% of the total patent applications in
China during 2001–2007, we have to be conservative should the results
be generalized to the overall analysis of China's patent surge. Other en-
tities such as research institutes and universities have also contributed to
the patent growth in China (Li, 2012). Another concern is on the effi-
ciency of the matching between two datasets. In the last row of Panel, A
in Table 1, we show the percentage of the total number of invention
patents in the merged dataset to the figure in the China Statistical
Yearbook on Science and Technology. We find this ratio varies across
years, with 55.57% in 2007 and 96.35% in 2003. We tend to believe that
the merged dataset is representative enough for the purpose of this study.

The last dataset this study employs is the information on provincial
patent subsidies from 2001 to 2007. This database is constructed from
official documents released on the websites of the provincial intellectual
property offices. For each type of patents, the patent subsidy policy is
classified into five categories based on various fees and statuses related to
the application process, which include reductions in application fees,
examination fees, agency costs, and annual fees, as well as grant-
contingent rewards after the approving of the application. For each
subsidy variable, the outcome can be de-fined according to one of the
three possible states: no subsidy, partial subsidy, and complete subsidy;
they are exclusive to each other. Dang and Motohashi (2015) measure
the intensity of subsidy by as-signing a larger value to complete subsidy
than to partial subsidy. To reduce the measurement error caused by
almost arbitrarily assigning values for the policy variables, we define the
subsidy variable as a dummy variable which is equal to 1 for either
partial subsidy or complete subsidy happens and 0 otherwise. This
approach also rules out the potential differences between different
sub-classes of patent subsidies imposed on different stages of patenting.6

This full database is reported in Table A1 in appendix. The final database
includes the starting year of the implementation of patent subsidy in
China mainland provinces from 2001 to 2007.
4 Dang and Motohashi (2015) propose to use the ‘knowledge width’ of each
patent as a measure of its quality. This method-ology uses the number of nouns
in claims to quantify the claim scope; a wider scope of claim represents better
patent quality.
5 Our results are robust if we assume certain correlation between the equa-

tions of different types of patents.
6 These include reductions in the fees associated with the application, ex-

amination, granting, and maintenance of patents.
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2.2. Data features

In this subsection, we present some descriptive statistics to motivate
the formal econometric analysis in subsequent sections. In general, the
preliminary description of the dataset stresses the importance of patent
types in investigating the driving forces behind China's patents surge,
especially for policies aimed at improving the innovative ability of Chi-
nese firms.

2.2.1. Extensive and intensive margins of patent applications
How active are Chinese firms actually in applying for patents? Not

surprisingly, a great majority of Chinese firms have never submitted any
patent applications. A large fraction of zero-patent counts is an important
feature of our data; we will take this into consideration when specifying
the econometric models. The average percentage of firms filing patents
applications are 1.11%, 1.25%, 1.99% for invention, design, and utility
model patents, respectively. It is worth noting that the number of firms
that produce patents is much lower than those have positive R&D ex-
penditures. In our data, 11% of the entire observations are actively
investing in R&D, which implies that R&D will not be fully transformed
into patent ideas. This confirms that patenting is just one mechanism
through which firms protect their profits due to innovation (Cohen et al.,
2000).

Although on average Chinese firms are not very active in applying for
patents, the percentage of firms applying for invention and utility model
patents is in a steady growing trend during our sample period. In Panel A
of Fig. 1, we plot the trends of patent applications. It shows clearly that
the percentage of firms who are applicants for invention patents had
reached 1.6% in 2007, almost 3 times larger than it was in 2001. Ap-
plications for utility model patents displayed a similar trend; the per-
centage increased from 1.45% in 2001 to 2.48% in 2007. In contrast, the
percentage for active design patents applicants is relatively stable, hov-
ering around 1.2%. In 2006 the percentage of firms applying for inven-
tion patents had exceeded that number for design patents. This tells us
that firms had become more active in generating invention and utility
model patents. As we have mentioned, invention patents and utility
model patents are of higher quality than design patents. The evolving
patterns of extensive margin of patent applications show that more and
more Chinese firms are applying for high-quality patents. Hu et al. (2017)
also find that most of China's patenting growth is due to the expansion at
the extensive margin during 2007 and 2011.

We also note that many firms apply for more than one type of patents.
To provide a more com-plate picture of the change in Chinese firm's
patent applications, we group the applicants into three cases–single-type
patent applicants, two-type patent applicants, and three-type patent ap-
plicants (see Panel B of Fig. 1). It is clear to see a steady growing pattern
for all three cases. In particular, the percentage for two-type patent ap-
plicants has increased the most, three-type patent applicants the least.
This indicates that firms are expanding the variety of patents.

After exploring the extensive margin of the patent application, we
turn to describe the character-is tics of average patent applications in the
dataset. In Panel B of Table 1, we show the evolution of patent intensity
defined as the average number of patent applications per firm between
2001 and 2007. As it shows, the average number of invention patents had
increased the most, climbing from .016 up to .117. In 2002, 2004, the
increase is around twofold. In comparison, the trend of utility model
patents and design patents are smoother. The average number of design
patents even exhibited a decreasing trend during 2004–2006, though it
bounded back to .097 in 2007.

2.2.2. R&D and patent applications
R&D measures the innovation motives for patenting. The significant

positive relationship between R&D and patents has been well docu-
mented in many studies (Griliches, 1979, 1981; Hausman et al., 1984; Hu
and Jefferson, 2009; Hu et al., 2017). Motivated by this literature, we
first check the simple correlation between R&D activities and the firm's



Table 1
Summary statistics of patents in merged dataset.

Panel A: Number and percentage of patents in the merged dataset

year 2001 2002 2003 2004 2005 2006 2007

invention 1982 4462 5333 7993 10100 17033 19750
6.60% 11.21% 9.39% 12.15% 10.80% 13.93% 12.90%

utility model 4202 5649 7496 7798 10720 15324 18212
5.30% 6.13% 6.95% 6.99% 7.76% 9.58% 10.12%

design 6316 8838 9131 10326 12665 15393 16425
11.19% 12.01% 10.54% 10.17% 8.35% 8.19% 6.48%

matching efficiency 57.10% 81.26% 96.35% 87.20% 57.58% 67.33% 55.67%

Panel B: Trend of average number of patent applications

year 2001 2002 2003 2004 2005 2006 2007

# of invention patents/firm 0.016 0.034 0.038 0.072 0.070 0.095 0.117
# of utility model patents/firm 0.035 0.043 0.053 0.071 0.075 0.086 0.108
# of design patents/firm 0.052 0.068 0.065 0.094 0.088 0.086 0.097

Panel C: R&D and patent application: discrete choices

invention utility model design all types

No Yes No Yes No Yes No Yes

present R&D No 853,150 4249 848,283 9116 850,982 6417 841,760 15,639
Yes 130,449 6798 126,612 10,635 131,232 6015 120,631 16,616

lagged R&D No 606,192 3853 602,412 7633 604,885 5160 597,048 12,997
Yes 99,390 5652 96,477 8565 100,312 4730 91,797 13,245

Note: matching efficiency refers the ratio of number of invention patents in the merged dataset to the published figure in China Statistical Yearbook on Science and
Technology 2001–2007.

Fig. 1. Trends of patents applications: extensive margin and number of patent types.
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decision to apply for patents for each type of patents, separately. Panel C
of Table 1 shows how the contemporaneous and lagged R&D expendi-
tures are associated with the patent application. Interestingly, many firm
observations are found to have positive patent applications even in the
absence of R&D investment; the pattern is quite similar for either present
or lagged R&D activities. We find some weak evidence suggesting that
firms undertaking R&D investment file more patent applications for in-
ventions and utility models. In contrast, we find no evidence supporting
that more innovative firms file more patent applications for new designs.
At least the preliminary statistics show that non-R&D firms file more
design patent applications than R&D-active firms.

Our simple statistics have shown that R&D have heterogeneous ef-
fects on the firm's behavior of filing different types of patents. In addition,
non-R&D incentives may play a role in explaining the filings of patents
applications for designs. Disregarding the substantial heterogeneity
when investigating the driving forces of the firm's patent application will
bias the estimates and generate misleading results.
297
3. Empirical strategy

In this section, we employ formal econometric methods to analyze the
driving forces behind the surge in different types of patents. To save
space, we only present two variations of count data models to deal with
over-dispersion and excessive zeros in the data.

3.1. Over-dispersion and negative binomial regression models

3.1.1. Over-dispersion in the data
We use Nit to denote the number of patent applications, the basic

specification of Poisson model is to parameterize the counts of patents as
a Poisson distribution with mean λit that is associated with certain firm
characteristics:

PrðNit ¼ nit jX itÞ ¼ e�λit λnitit
nit !
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λit ¼ exp
�
X '

itβ
�

where X '
it includes interested explanatory variables. In particular, it can

be written as

X '
it ¼ ðlogðRDitÞ; logðRDit�1Þ;Z '

it

�
where log (RDit) is the log of R&D expenditures, and log (RDit�1) is the
lagged R&D expenditures. Zit is a vector including other important fac-
tors documented in the literature, such as foreign direct investment (fdiit)
and\or patent subsidy (psubit). To account for the industrial specific ef-
fects, we also include an industrial dummy variable that is equal to one
when the firm belongs to a high-tech industry.7 Considering that time
effects may affect the growth of patents, we also control for the fixed
effects. The specification of Poisson model implicitly imposes the con-
ditional mean and variance of Nit are the same. When the conditional
variance is greater than the conditional mean, the data are over-
dispersed. To detect whether there is over-dispersion in the data, we
allow the variance-mean ratio to be any positive constant:

VarðNit jX itÞ ¼ σ2EðNit jX itÞ ¼ σ2λit (1)

Then σ2 can be estimated using the QMLEs of β by considering the
sample analog. We estimate the variance-mean ratio for the Poisson
models. For all models, the estimation results show that σ‘s are greater
than one, strongly suggesting over-dispersion in the data. Therefore, we
use alternative specifications to suit our data better.8

3.1.2. Negative binomial mean-dispersion model
Following the existing literature on count data models, we consider

two approaches to deal with the over-dispersion in the data. One is the
mean-dispersion model with a common parameter, the other is a model
with a parameterized distribution for the unobserved heterogeneity.
Below we only discuss briefly about these two methods. Details about
these econometric methods can be found in Cameron and Trivedi (2013).

Mean-dispersion model with common parameter One way of
constructing the negative binomial mean-dispersion model is to intro-
duce unobserved heterogeneity in a Poisson model.9 Let ηit be the un-
observed error term and assume that expðηitÞ follows a gamma

distribution with parameters
�

1
α;α

�
. Thus EðexpðηitÞÞ ¼ 1, VarðηitÞ ¼ α.

We further assume that expðηitÞ is independent of X it .10 It can be shown
that the conditional distribution of Nit on X it is negative binomial, with
conditional mean and variance as follows.11

EðNit jXitÞ ¼ λit (2)

VarðNit jX itÞ ¼ λit þ αλ2it (3)

α is called the parameter of over-dispersion; the larger α is, the more over-
dispersed the data are. In particular, when α, the negative binomial
specification degenerates to be the Poisson model. In this sense, the
negative binomial model generalizes the Poisson model to capture the
7 Alternatively, we have tried to include a full set of industry dummies to
control for potential industry fixed effects; the results remain robust.
8 To save space, we do not present the detailed results. The full estimation

results are available upon request.
9 The negative binomial mean-dispersion model is also known as the NegBin

Iwemodel (Cameron and Trivedi, 2013).
10 We will return to discuss this assumption when we consider the endogeneity
issue of our models.
11 We also tried to employ the results of fixed effects Poisson model. The re-
sults, however, show that fixed effects Poisson model provides a poor fitting to
the data with the Hausman testing statistic being negative for most of the
groups.
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over-dispersion in the data. As is pointed out, under (2), for any fixed
positive value for α, the coefficient estimates of β by maximizing the
associated log likelihood function Lðβ; αÞ are consistent (Wooldridge,
2010).

Mean-dispersion model with parameterized α Although the
aforementioned negative binomial mean-dispersion model tackles the
over-dispersion in the data to some extent, the assumption that α is
identical to all observations is too restrictive. To relax this restriction, we
consider parameterizing α as follows

lnðαitÞ ¼ γ0 þW '
itθþ f0 þ ft (4)

where W '
it is a vector containing age, size, and htech. f0 represent the

coefficients of ownership dummies; ft is the coefficient for year dummies.
γ0; θ; f0, and ft are parameters to be estimated along with the other model
coefficients.

3.2. Excessive zeros of patent applications

In the data section, we have shown that most (around 98%) of the
firms do not file any patent ap-plications. This poses challenges to the
assumption that the outcome of patents follows a Poisson distribution. To
fit the data better, we need to model the event of whether a firm creates
patents in addition to the Poisson distribution. Lambert (1992) develops
the Zero Inflated Poisson (ZIP) model to deal with this situation. Let pit be
the probability that a firm refuses to apply for any patents, then ð1� pitÞ
becomes the propensity of applying for some patents. To model the
discrete choice to patent or not, we specify following logit model:

pit ¼ F
�
W '

itγ
� ¼ 1

1þ exp
��W '

itγ
� (5)

Then the log likelihood function for this specification can be written
as:

Lðγ; β; nit ;X it ;W itÞ ¼
X
nit¼0

ln
�
FðW '

itγ þ
�
1� F

�
W '

itγ
��� �

exp
�

� exp
�
X '

itβ
���	þ

X
nit>0

�
ln
�
1� F

�
W '

itγ
��� exp

�
X '

itβ
�

þ nitX '
itβ� lnðnit !Þ

	
(6)

The estimate of ðγ; βÞ is obtained by maximizing the above likelihood
function (6). To account for the over-dispersion problem, we also add an
unobserved component to λit and estimate a Zero Inflated Negative
Binomial (ZINB) model.

4. Estimation results

The estimation results of the negative binomial mean-dispersion
model are reported in Table 2. First, in each group of the models, the
estimation results of α indicate strong over-dispersion in the data.
Considering this, the negative binomial model, which takes the over-
dispersion into account, fits our data better. In the results of negative
binomial model, the patent subsidy is more effective for utility model
patents and design patents. Also, private firms and foreign firms are
found to file more patent applications than state-owned firms for all types
of patents.

Note that the productivity of R&D in creating patents differs across
types of patents. The invention patents have the largest R&D-patent
elasticity both for the current and lagged R&D, while the design patents
display the smallest R&D-patent elasticity. Moreover, the coefficient of
lagged R&D is smaller than that of the present R&D for all types of pat-
ents. However, for utility models and designs, R&D expenditures become
less important for the filings of patents when we control for FDI and
patent subsidy. Furthermore, FDI is more effective in stimulating the
patenting applications for designs than inventions and utility models.



Table 2
Regression results of negative binomial mean-dispersion model with common α.

Dependent Variables Total patents Invention Utility model Design

(1) (2) (3) (4)

Independent Variables
logðRDit Þ 0.103***

(0.005)
0.137***
(0.006)

0.119***
(0.004)

0.074***
(0.012)

logðRDit�1Þ 0.077***
(0.007)

0.089***
(0.007)

0.084***
(0.004)

0.064***
(0.016)

psubit 0.455***
(0.053)

0.210**
(0.072)

0.334***
(0.060)

0.584***
(0.094)

FDIjt 3.255***
(0.169)

2.257***
(0.341)

2.903***
(0.125)

4.109***
(0.300)

sizeit 0.706***
(0.018)

0.560***
(0.026)

0.627***
(0.017)

0.826***
(0.035)

ageit 0.004*
(0.002)

0.002
(0.003)

0.002
(0.001)

0.005
(0.003)

htechit 0.415***
(0.041)

1.077***
(0.077)

0.289***
(0.042)

0.217**
(0.071)

privateit 0.642***
(0.069)

0.467***
(0.063)

0.409***
(0.074)

0.887***
(0.116)

foreignit 0.969***
(0.082)

0.675***
(0.094)

0.553***
(0.079)

1.310***
(0.138)

contant �6.984***
(0.149)

�7.232***
(0.175)

�7.116***
(0.161)

�9.008***
(0.271)

time FE yes yes yes yes

lnðαÞ 3.653***
(0.019)

3.686***
(0.051)

3.471***
(0.023)

4.853***
(0.028)

# of obs. 706388

log� pl �158500.4 �57374.6 �94996.8 �71006.1
χ2 8026.2 6269.5 10592.0 2314.4bα 38.59 39.89 32.16 128.1

Note: the dispersion parameter α is common to all observations. χ2 is the chi-
square testing statistic under the null hypothesis that a constant-only model
does better. log � pl is the log-pseudo likelihood. All standard errors are robust to
some kinds of misspecification. bα is parameter capturing the over-dispersion.
*** 0.1% significance level; ** 1% significance level; * 5% significance level.

Table 3
Estimation results of negative binomial mean-dispersion model with α
parameterized.

Dependent Variables Total patents Invention Utility model Design

(1) (2) (3) (4)

Independent Variables
logðRDit Þ 0.098***

(0.005)
0.132***
(0.007)

0.112***
(0.004)

0.074***
(0.008)

logðRDit�1Þ 0.068***
(0.005)

0.083***
(0.007)

0.080***
(0.004)

0.053***
(0.009)

psubjt 0.376***
(0.053)

0.168*
(0.069)

0.337***
(0.059)

0.417***
(0.095)

FDIjt 3.164***
(0.160)

2.495***
(0.327)

3.040***
(0.138)

3.264***
(0.265)

sizeit 0.718***
(0.018)

0.620***
(0.023)

0.656***
(0.024)

0.786***
(0.028)

ageit 0.001
(0.002)

�0.001
(0.002)

0.001
(0.001)

�0.001
(0.002)

htechit 0.411***
(0.038)

1.141***
(0.066)

0.297***
(0.045)

0.160*
(0.062)

privateit 0.690***
(0.055)

0.465***
(0.062)

0.423***
(0.066)

0.945***
(0.095)

foreignit 0.921***
(0.069)

0.627***
(0.097)

0.527***
(0.076)

1.226***
(0.114)

time FE yes yes yes yes
Dependent variable: ln α
sizeit �0.392***

(0.011)
�0.380***
(0.029)

�0.328***
(0.018)

�0.509***
(0.015)

ageit �0.011***
(0.001)

�0.006**
(0.002)

�0.014***
(0.002)

�0.002
(0.001)

htechit �0.879***
(0.033)

�0.616***
(0.075)

�0.315***
(0.049)

�1.016***
(0.047)

privateit �0.253***
(0.052)

�0.359***
(0.086)

�0.281**
(0.091)

�0.420***
(0.074)

foreignit 0.130*
(0.056)

0.798***
(0.099)

0.003
(0.097)

�0.222**
(0.080)

time FE yes yes yes yes

# of obs. 706388

log� pl �155354.3 �56215.7 �93913.4 �69304.0
χ2 9571.3 6772.2 10421.9 2995.6

Note: α is parameterized as a function of age, size, htech, and ownership and year
dummies χ2 is the chi-square testing statistic under the null hypothesis that a
constant-only model does better. log � pl is the log-pseudo likelihood. All stan-
dard errors are robust to some kinds of misspecification. bα is parameter capturing
the over-dispersion.
*** 0.1% significance level; ** 1% significance level; * 5% significance level.
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Note that these differences found for various types of patents would
disappear if we pool all patents together or only consider a single type of
patents. Especially, the estimation results would be much less informa-
tive since the potential heterogeneous effects are averaged out when we
pool all of the three types of patents together, which are shown in Col-
umn (1) in Table 2.

In Table 3 we display the estimation results for the mean-dispersion
model with a parameterized α. As we can see from the results, the co-
efficients of explanatory variables display a pattern similar to results
presented in Table 2. This shows that previous results are robust to the
alternative parameterization of α. Also note that for the equation of ln
(α), the coefficients of size, age, and hitch are all negative, implying that
big firms, old firms, and firms in high-tech industries display smaller
over-dispersion in the data.

In Table 4, we present the results of ZIP and ZINB. For different types
of patents, we estimate two different models by including different
covariates intoW it . In subgroup a, we include patent subsidies, firm size,
firm age, ownership dummies, and a constant, while in subgroup b FDI
and a full set of year dummies are added. Under our specification,
because most of the observations are of zero patent applications, the
inflate part of the model captures more about the extensive margin of the
patent's application. The part of Poisson process is associated more with
the intensive margin of the patent application. For any variables included
in Xit, we say there is a strong evidence showing that it explains the
patents outcomewhen its coefficient is significantly positive in the part of
negative binomial model.

There is still a lack of strong evidence showing that patent subsidy
stimulates firms to file more invention patents. But the coefficients of log
(RDit) and log (RDit�1) are positive and significant at 1% significance
level for the group of invention patents. More importantly, these
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coefficients are larger than those in the groups of utility model patents or
design patents, which implies R&D plays a more important role in
explaining the invention patents. Last but not the least, the effect of FDI
on invention patents is positive. This could be either the impact of foreign
competition or knowledge spillovers (Aitken and Harrison, 1999; Lu
et al., 2017). Overall, these results suggest that FDI is not a significant
factor in explaining the patenting outcome when conditioning on the
firm's R&D investment.

We can see from the middle columns of Table 4 that both patent
subsidy and FDI play significant roles in driving up the number of ap-
plications for utility model patents. In all estimations, the coefficient of
the dummy variable for private firms are significant and positive for the
negative binomial part, and negative for the inflate part. This implies
private firms are filingmore patents for all of the three types of patents. In
contrast, there is only evidence showing that foreign firms are filing more
design patents.

5. Endogeneity issue

Our empirical results in previous section display some interesting
patterns that are consistent with existing studies by Hu and Jefferson
(2009) and Li (2012). However, we should be cautious because of the
endogeneity issue caused by unobserved idiosyncratic characteristics. In



Table 4
Estimation results of the zero-inflated Poisson and negative binomial models.

patent types Invention Utility model Design

Poisson NB Poisson NB Poisson NB

logðRDit Þ 0.125***
(0.027)

0.131***
(0.007)

0.030**
(0.011)

0.108***
(0.004)

�0.003
(0.007)

0.076***
(0.006)

logðRDit�1Þ 0.017
(0.027)

0.084***
(0.007)

0.019
(0.011)

0.079***
(0.004)

0.003
(0.006)

0.049***
(0.006)

psubjt 0.533**
(0.194)

0.267
(0.139)

�0.008
(0.050)

0.189***
(0.056)

0.363***
(0.059)

0.814***
(0.076)

FDIjt 4.288***
(0.428)

3.075***
(0.447)

0.888***
(0.149)

0.319
(0.262)

0.223
(0.170)

�0.470
(0.268)

sizeit 0.805***
(0.061)

0.268***
(0.046)

0.490***
(0.038)

0.389***
(0.034)

0.452***
(0.027)

0.357***
(0.028)

ageit �0.019***
(0.003)

�0.004
(0.004)

�0.010***
(0.001)

�0.014***
(0.002)

�0.009***
(0.002)

�0.012***
(0.003)

privateit 0.057
(0.263)

0.200
(0.136)

0.358***
(0.079)

0.303**
(0.112)

0.497***
(0.093)

0.732***
(0.124)

foreignit �0.569
(0.387)

1.403***
(0.183)

0.354***
(0.082)

0.574***
(0.131)

0.535***
(0.099)

0.969***
(0.141)

hitech 0.920***
(0.126)

0.578***
(0.115)

0.282**
(0.092)

0.153*
(0.072)

�0.305***
(0.070)

�0.683***
(0.079)

logðαÞ – 2.581***
(0.046)

– 2.669***
(0.053)

– 3.476***
(0.050)

log� pl �105770.9 �56429.5 �123183.4 �93710.7 �122782.6 �68700.1
χ2-statistic 255719.7 12490.2 39774.8 10394.1 26176.1 2709.9
Vuong test 20.54 11.62 40.56 13.87 35.71 21.83
# of obs. 706388

Note: Vuong test is the model specification test on zero-inflated negative binomial model versus standard negative binomial model, with the null hypothesis that the
standard negative binomial model fits the data better. Year dummies are including in all specifications. The standard errors are adjusted for the correlation between
equations.
*** 0.1% significance level; ** 1% significance level; * 5% significance level.

Table 5
Estimation results of fixed effects negative binomial model.

Dependent Variables Total
patents

Invention Utility
model

Design

(1) (2) (3) (4)

Independent Variables
logðRDit Þ 0.030***

(0.002)
0.019***
(0.003)

0.022***
(0.002)

0.025***
(0.003)

logðRDit�1Þ 0.016***
(0.002)

0.006*
(0.003)

0.011***
(0.002)

0.015***
(0.003)

psubjt 0.068
(0.038)

�0.033
(0.064)

0.089
(0.052)

0.194**
(0.065)

FDIjt 0.386***
(0.086)

0.219
(0.152)

0.321**
(0.116)

0.928***
(0.137)

sizeit 0.139***
(0.010)

0.148***
(0.019)

0.095***
(0.014)

0.221***
(0.017)

ageit 0.000
(0.001)

0.001
(0.002)

�0.000
(0.001)

�0.002
(0.002)

time FE yes yes yes yes

# of obs. 65140 27530 42155 28087
dropped obs.:reason I 73051 73051 73051 73051
dropped obs
(groups).:reason II

568197
(147510)

605807
(155232)

591182
(152223)

605250
(155127)

log� pl �55319.2 �16803.1 �30604.3 �21716.8
χ2 1782.4 1318.7 1088.1 582.6
Hausman test χ2 14063.63 6130.26 8296.64 3566.26

Note: Hausman test is the specification test under the null hypothesis that
random-effects model and fixed-effects model have no systematic difference in
coefficients. χ2 is the chi-square testing statistic under the null hypothesis that a
constant-only model does better. log � pl is the log-pseudo likelihood. Reason I
for dropping observations is the single observation over the sample period;
reason II is the all-zero outcomes observations. All standard errors are clustered
at city level. *** 0.1% significance level; ** 1% significance level; * 5% signifi-
cance level.
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this section, we try to use panel data methods to deal with this concern.
We regard the estimation results as a more convincing interpretation of
our dataset.

In the specification of negative binomial model, we allow the
variance-to-mean ratio to differ across firms and across time by imposing
a specific form to the Poisson parameter. However, a shortcoming of the
negative binomial specification is it assumes that the unobserved firm-
specific heterogeneity is independent of the explanatory variables. To
deal with this problem, we follow Hausman et al. (1984) (HHG hereafter)
to estimate a fixed-effects negative binomial model. This model allows
for arbitrary dependence between the unobserved idiosyncratic charac-
teristics and the explanatory variables while allowing for over-dispersion
in the data.11 An alternative specification of the error term is the
random-effects negative binomial model. We omit the details of its
specification. Instead, we show results of the Hausman specification test
that favor the fixed-effects model. To save space, we only report the
estimation results of fixed effects negative binomial model in Table 5.

One noteworthy result in Table 5 is a great shrinkage in the sample
size. Compared to the original sample size in the pooled regression, most
of the observations are deleted due to the all-zero outcomes for the
dependent variable. We also report the number of observations deleted
because of single observation over the sample period. This great loss of
information reminds us to be cautious when interpreting the results.

In Table 5, the coefficients of log (RDit) and log (RDit�1) are much
smaller than estimates reported in Tables 3 and 4. Recall that we have
shown that there is a substantial R&D investment gap between firms with
patent applications and those of no patent application. Since the panel
data model drops most of the data with zero patent applications, the
remaining dataset contains firms that invest relatively more in R&D. As a
result, the variations in patents and R&D both become smaller.

The coefficient estimates show that the drop in the variation of pat-
ents is more significant compared to that in the variation of investment in
R&D. For the coefficient of FDI, we find it only drives the filings of utility
model patents and design patents. When we look at the coefficient
300
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estimates for patent subsidy, the coefficient is only significantly positive
for design patents.

6. Conclusion

R&D has a long-lasting effect on firm performance (Bournakis and
Mallick, 2018). Our empirical re-salts robustly show that R&D has a
positive impact on patenting. This is consistent with the findings in
studies investigating the R&D-patents relationship (Griliches, 1981;
Hausman et al., 1984; Hall et al., 1986). But a simple calculation can
show that R&D growth is not sufficient to explain the patenting growth in
China. According to the OECD database, China's R&D expenditures had a
256.27% (215.87%) increase from 1999 to 2006 (2000–2007). Given the
patent- R&D elasticity reported in Table 5, the predicted patenting
growth rate should be 5.64% for invention patents, 7.57% for utility
model patents, and 9.24% for design patents. In contrast, the number of
inventions, utility model, and design patents have an 896.47%, 333.41%,
and 160.05% increase in the sample period, separately. This reminds us
to consider other factors in order to fully explain the patenting growth in
China.

To some extent, the empirical results question the perception that
foreign firms have stimulated Chinese firms to apply for more inventive
patents. Conditional on the firm's R&D investment, FDI has no significant
impact on the patenting for inventions. However, FDI has positive and
significant effects on utility model and design patents. Note that the co-
efficient of FDI is a mixture of spillover effects and competition effects.
This result implies that the spillover effect is restricted to low-quality
ideas. With the reduced costs of innovation, the competition effect
from FDI further encourages Chinese firms to employ relatively low-
quality patents to take advantage of some loopholes in the patent law
to compete with foreign firms (Hu and Jefferson, 2009). Lu et al. (2017)
also find no beneficial spillovers from FDI in China.

We only find that the patent subsidy has positive and significant ef-
fects on the patenting of design patents. We attribute this finding to two
main reasons. First, note that design patents are of the lowest quality.
Generating a design patent application is of costs lower than an invention
patent or utility model patent. Firms make patenting decision by
comparing its expected payoffs and costs. If the reductions in the pat-
enting fees are negligible compared to the benefits, the firm's patenting
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decision will not change. As a result, patenting subsidy will increase the
low-quality patent applications dis-proportionately (De Rassenfosse and
Jaffe, 2018). Second, Li (2012) argues that patent subsidies are not only
effective in encouraging more individuals and universities to apply for
invention patents but also are inducing firms to file more applications for
invention patents. According to our results, we expect this argument only
works for individuals and small firms which are usually more financially
constrained than large firms and research institutions. Overall, patent
subsidy has only stimulated the creation of low-quality patents (the
design patents). This is consistent with the findings by Dang and Moto-
hashi (2015). We also note that the coefficient of firm size is positive and
significant for all the three different types of patents. This implies that
larger firms are more likely to apply for patents. There is no significant
correlation between firm age and the creation of patents; implying that
patenting is neutral to firm age.

The empirical results have several implications for policies aiming to
promote innovation in developing countries. First, development policies
using FDI as the key driver of technological progress need to be recon-
sidered. FDI may play an important role in spreading relatively low-
quality ideas, but relying on FDI to move up to the technological fron-
tier is much less promising. The cutting-edge technology can only be
developed through indigenous R&D. Second, patent subsidies increase
the low-quality patents disproportionately by decreasing the patenting
fees. The surge in low-quality patents may cause the fragmentation of
intellectual property rights. Ultimately, the fragmentation will signifi-
cantly raise the costs of using knowledge and may discourage R&D in-
vestment (Heller and Eisenberg, 1998). In addition, the surge in
patenting applications may cause the patents examiners to spend less
time on each patent and make more mistakes in granting patent rights.
This can also lead to low-quality patents. To guarantee the quality stan-
dards, reductions in the patent fees should be combined with improve-
ment in governance of patent offices as well as a supply of more
professional patent examiners.

This study stresses the importance of patent quality in understanding
the patent surge in China. As indicated by the empirical findings, R&D
investment is more important in explaining high-quality patents, while
FDI and patent subsidy stimulate the filings of patents of lower quality. It
is the future work that we aim to reconcile these findings in a coherent
theoretical framework.
Patent subsidy data
Table A1
Data of patent subsidies.

province starting year province starting year
Beijing
 2000
 Henan
 2002

Tianjing
 2002
 Hubei
 2007

Hebei
 2002
 Hunan
 2004

Shanxi
 2002
 Guangdong
 2000

Inner Mongolia
 2001
 Guangxi
 2004

Liaoning
 2002
 Hainan
 2001

Jiling
 2004
 Chongqing
 2007

Heilongjiang
 2001
 Sichuan
 2001

Shanghai
 1999
 Guizhou
 2006

Jiangsu
 2001
 Yunnan
 2003

Zhejiang
 2001
 Xizang
 2004

Anhui
 2003
 Shanxi
 2004

Fujian
 2002
 Gansu
 –
Jiangxi
 2002
 Qinghan
 2006

Shangdong
 2006
 Ningxia
 2010
Xinjiang
 2002
Appendix C. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.econmod.2018.11.015.
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